/** Copyright (C) powturbo 2013-2018 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - homepage : https://sites.google.com/site/powturbo/ - github : https://github.com/powturbo - twitter : https://twitter.com/powturbo - email : powturbo [_AT_] gmail [_DOT_] com **/ // "Floating Point/Integer Compression" #pragma warning( disable : 4005) #pragma warning( disable : 4090) #pragma warning( disable : 4068) #include "conf.h" #include "vp4.h" #include "fp.h" #include "bitutil.h" #define VSIZE 128 // Unlike almost floating point compressors, we are using the better zigzag encoding instead the XOR technique. //#define ENC64(u,h) ((u)^(h)) //#define DEC64(u,h) ((u)^(h)) #define ENC64(u,h) zigzagenc64((int64_t)u-(int64_t)h) #define DEC64(u,h) zigzagdec64(u)+(int64_t)h //---- Last value Predictor size_t fppenc64(uint64_t *in, size_t n, unsigned char *out, uint64_t start) { uint64_t _p[VSIZE+32], *ip, *p; unsigned char *op = out; #define FE64(i) { uint64_t u = ip[i]; p[i] = ENC64(u, start); start = u; } for(ip = in; ip != in + (n&~(VSIZE-1)); ) { for(p = _p; p != &_p[VSIZE]; p+=4,ip+=4) { FE64(0); FE64(1); FE64(2); FE64(3); } op = p4enc64(_p, VSIZE, op); __builtin_prefetch(ip+512, 0); } if(n = (in+n)-ip) { for(p = _p; p != &_p[n]; p++,ip++) FE64(0); op = p4enc64(_p, n, op); } return op - out; } size_t fppdec64(unsigned char *in, size_t n, uint64_t *out, uint64_t start) { uint64_t *op, _p[VSIZE+32],*p; unsigned char *ip = in; #define FD64(i) { uint64_t u = DEC64(p[i], start); op[i] = u; start = u; } for(op = out; op != out+(n&~(VSIZE-1)); ) { __builtin_prefetch(ip+512, 0); for(ip = p4dec64(ip, VSIZE, _p), p = _p; p != &_p[VSIZE]; p+=4,op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); } } if(n = (out+n) - op) for(ip = p4dec64(ip, n, _p), p = _p; p != &_p[n]; p++,op++) FD64(0); return ip - in; } // delta of delta size_t fpddenc64(uint64_t *in, size_t n, unsigned char *out, uint64_t start) { uint64_t _p[VSIZE+32], *ip, *p, pd = 0; unsigned char *op = out; #define FE64(i) { uint64_t u = ip[i]; start = u-start; p[i] = ENC64(start,pd); pd = start; start = u; } for(ip = in; ip != in + (n&~(VSIZE-1)); ) { for(p = _p; p != &_p[VSIZE]; p+=4,ip+=4) { FE64(0); FE64(1); FE64(2); FE64(3); } op = p4enc64(_p, VSIZE, op); __builtin_prefetch(ip+512, 0); } if(n = (in+n)-ip) { for(p = _p; p != &_p[n]; p++,ip++) FE64(0); op = p4enc64(_p, n, op); } return op - out; } size_t fpdddec64(unsigned char *in, size_t n, uint64_t *out, uint64_t start) { uint64_t _p[VSIZE+32],*p, *op, pd=0; unsigned char *ip = in; #define FD64(i) { uint64_t u = DEC64(p[i],start+pd); op[i] = u; pd = u - start; start = u; } for(op = out; op != out+(n&~(VSIZE-1)); ) { __builtin_prefetch(ip+512, 0); for(ip = p4dec64(ip, VSIZE, _p), p = _p; p != &_p[VSIZE]; p+=4,op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); } } if(n = (out+n) - op) for(ip = p4dec64(ip, n, _p), p = _p; p != &_p[n]; p++,op++) FD64(0); return ip - in; } #define HBITS 13 //15 #define HASH64(_h_,_u_) (((_h_)<<5 ^ (_u_)>>50) & ((1u<>3), _bw_ >>=(_br_&~7), _br_ &= 7 #define bitflush( _bw_,_br_,_op_) ctou64(_op_) = _bw_, _op_ += (_br_+7)>>3, _bw_=_br_=0 #ifdef __AVX2__ #include #else #define _bzhi_u64(_u_, _b_) ((_u_) & ((1ull<<(_b_))-1)) #define _bzhi_u32(_u_, _b_) ((_u_) & ((1u <<(_b_))-1)) #endif #define bitpeek32( _bw_,_br_,_nb_) _bzhi_u32(_bw_>>_br_, _nb_) #define bitpeek64( _bw_,_br_,_nb_) _bzhi_u64(_bw_>>_br_, _nb_) #define bitpeek( _bw_,_br_) (_bw_>>_br_) #define bitrmv( _bw_,_br_,_nb_) _br_ += _nb_ #define bitget( _bw_,_br_,_nb_,_x_) _x_ = bitpeek64(_bw_, _br_, _nb_), bitrmv(_bw_, _br_, _nb_) #define bitdnorm( _bw_,_br_,_ip_) _bw_ = ctou64(_ip_ += (_br_>>3)), _br_ &= 7 #define bitalign( _bw_,_br_,_ip_) (_ip_ += (_br_+7)>>3) #define bitput64(bw,br,_b_,_x_,_op_) if((_b_)>45) { bitput(bw,br,(_b_)-32, (_x_)>>32); bitenorm(bw,br,_op_); bitput(bw,br,32,(unsigned)(_x_)); } else bitput(bw,br,_b_,_x_); #define bitget64(bw,br,_b_,_x_,_ip_) if((_b_)>45) { unsigned _v; bitget(bw,br,(_b_)-32,_x_); bitdnorm(bw,br,_ip_); bitget(bw,br,32,_v); _x_ = _x_<<32|_v; } else bitget(bw,br,_b_,_x_); // Fastest Gorilla (see Facebook paper) Floating point/Integer compression implementation using zigzag encoding instead of XOR. Compression 5 GB/s, Decompression: 10 GB/s size_t fpgenc64(uint64_t *in, size_t n, unsigned char *out, uint64_t start) { uint64_t *ip; unsigned ol = 0,ot = 0; unsigned char *op = out; bitdef(bw,br); #define FE64(i) { uint64_t z = ENC64(ip[i], start); start = ip[i];\ if(likely(!z)) bitput( bw,br, 1, 1);\ else { unsigned t = ctz64(z), l = clz64(z); l = l>31?31:l;\ if(l >= ol && t >= ot) { bitput( bw,br, 2, 2); l = 64 - ol - ot; z>>=ot; bitput64(bw,br, l, z,op); }\ else { bitput( bw,br, 2+6+5, (t-1)<<5|l); ol = 64 - l - t; z>>= t; bitput64(bw,br, ol, z,op); ol = l; ot = t; } \ } bitenorm(bw,br,op);\ } for(ip = in; ip != in + (n&~(4-1)); ip+=4) { __builtin_prefetch(ip+512, 0); FE64(0); FE64(1); FE64(2); FE64(3); } for( ; ip != in + n ; ip++ ) FE64(0); bitflush(bw,br,op); return op - out; } size_t fpgdec64(unsigned char *in, size_t n, uint64_t *out, uint64_t start) { if(!n) return 0; uint64_t *op; unsigned ol = 0,ot = 0,x; unsigned char *ip = in; bitdef(bw,br); #define FD64(i) { uint64_t z=0; unsigned _x; bitget(bw,br,1,_x); \ if(likely(!_x)) { bitget(bw,br,1,_x);\ if(!_x) { bitget(bw,br,11,_x); ot = (_x>>5)+1; ol = _x & 31; } bitget64(bw,br,64 - ol - ot,z,ip); z<<=ot;\ } op[i] = start = DEC64(z, start); bitdnorm(bw,br,ip);\ } for(bitdnorm(bw,br,ip),op = out; op != out+(n&~(4-1)); op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); __builtin_prefetch(ip+512, 0); } for( ; op != out+n; op++) FD64(0); bitalign(bw,br,ip); return ip - in; } // Improved Gorilla style compression with sliding double delta for timestamps in time series. // Up to 300 times better compression and several times faster #define N2 6 // for seconds time series #define N3 10 #define N4 17 // must be > 16 #define NL 18 #define ENC32(_pp_, _ip_, _d_, _op_) do {\ size_t _r = _ip_ - _pp_;\ if(_r > NL) { _r -= NL; unsigned _b = (bsr32(_r)+7)>>3; bitput(bw,br,4+3+3,(_b-1)<<(4+3)); bitput64(bw,br,_b<<3, _r, _op_); bitenorm(bw,br,_op_); }\ else while(_r--) { bitput(bw,br,1,1); bitenorm(bw,br,_op_); }\ _d_ = zigzagenc32(_d_);\ if(!_d_) bitput(bw,br, 1, 1);\ else if(_d_ < (1<< (N2-1))) bitput(bw,br, N2+2,_d_<<2|2);\ else if(_d_ < (1<< (N3-1))) bitput(bw,br, N3+3,_d_<<3|4);\ else if(_d_ < (1<< (N4-1))) bitput(bw,br, N4+4,_d_<<4|8);\ else { unsigned _b = (bsr32(_d_)+7)>>3; bitput(bw,br,4+3,(_b-1)<<4); bitput(bw,br, _b<<3, _d_); }\ bitenorm(bw,br,_op_);\ } while(0) #define OVERFLOW if(op >= out_) { *out++ = 1<<4; /*bitini(bw,br); bitput(bw,br,4+3,1<<4); bitflush(bw,br,out);*/ memcpy(out,in,n*sizeof(in[0])); return 1+n*sizeof(in[0]); } size_t bitgenc32(uint32_t *in, size_t n, unsigned char *out, uint32_t start) { uint32_t *ip = in, pd = 0, *pp = in,dd; unsigned char *op = out, *out_ = out+n*sizeof(in[0]); bitdef(bw,br); if(n > 4) for(; ip < in+(n-1-4);) { start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; __builtin_prefetch(ip+256, 0); continue; a:; ENC32(pp,ip, dd, op); OVERFLOW; pp = ++ip; } for(;ip < in+n;) { start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto b; ip++; continue; b:; ENC32(pp,ip, dd, op); OVERFLOW; pp = ++ip; } if(ip > pp) { start = ip[0] - start; dd = start-pd; ENC32(pp, ip, dd, op); OVERFLOW; } bitflush(bw,br,op); return op - out; } size_t bitgdec32(unsigned char *in, size_t n, uint32_t *out, uint32_t start) { if(!n) return 0; uint32_t *op = out, pd = 0; unsigned char *ip = in; bitdef(bw,br); for(bitdnorm(bw,br,ip); op < out+n; ) { __builtin_prefetch(ip+384, 0); uint32_t dd = bitpeek(bw,br); if(dd & 1) bitrmv(bw,br, 0+1), dd = 0; else if(dd & 2) bitrmv(bw,br,N2+2), dd = _bzhi_u32(dd>>2, N2); else if(dd & 4) bitrmv(bw,br,N3+3), dd = _bzhi_u32(dd>>3, N3); else if(dd & 8) bitrmv(bw,br,N4+4), dd = _bzhi_u32(dd>>4, N4); else { unsigned b,*_op; uint64_t r; bitget(bw,br, 4+3, b); if((b>>=4) <= 1) { if(b==1) { // No compression, because of overflow memcpy(out,in+1, n*sizeof(out[0])); return 1+n*sizeof(out[0]); } bitget(bw,br,3,b); bitget64(bw,br,(b+1)<<3,r,ip); bitdnorm(bw,br,ip); // RLE #ifdef __SSE2__ __m128i sv = _mm_set1_epi32(start), cv = _mm_set_epi32(4*pd,3*pd,2*pd,1*pd); for(r += NL, _op = op; op != _op+(r&~7);) { sv = _mm_add_epi32(sv,cv); _mm_storeu_si128(op, sv); sv = _mm_shuffle_epi32(sv, _MM_SHUFFLE(3, 3, 3, 3)); op += 4; sv = _mm_add_epi32(sv,cv); _mm_storeu_si128(op, sv); sv = _mm_shuffle_epi32(sv, _MM_SHUFFLE(3, 3, 3, 3)); op += 4; } start = (unsigned)_mm_cvtsi128_si32(_mm_srli_si128(sv,12)); #else for(r+=NL, _op = op; op != _op+(r&~7); op += 8) op[0]=(start+=pd), op[1]=(start+=pd), op[2]=(start+=pd), op[3]=(start+=pd), op[4]=(start+=pd), op[5]=(start+=pd), op[6]=(start+=pd), op[7]=(start+=pd); #endif for(; op != _op+r; op++) *op = (start+=pd); continue; } bitget(bw,br,(b+1)<<3,dd); } pd += zigzagdec32(dd); *op++ = (start += pd); bitdnorm(bw,br,ip); } bitalign(bw,br,ip); return ip - in; } #define N2 6 // for seconds/milliseconds,... time series #define N3 12 #define N4 20 // must be > 16 #define ENC64(_pp_, _ip_, _d_, _op_) do {\ uint64_t _r = _ip_ - _pp_;\ if(_r > NL) { _r -= NL; unsigned _b = (bsr64(_r)+7)>>3; bitput(bw,br,4+3+3,(_b-1)<<(4+3)); bitput64(bw,br,_b<<3, _r, _op_); bitenorm(bw,br,_op_); }\ else while(_r--) { bitput(bw,br,1,1); bitenorm(bw,br,_op_); }\ _d_ = zigzagenc64(_d_);\ if(!_d_) bitput(bw,br, 1, 1);\ else if(_d_ < (1<< (N2-1))) bitput(bw,br, N2+2,_d_<<2|2);\ else if(_d_ < (1<< (N3-1))) bitput(bw,br, N3+3,_d_<<3|4);\ else if(_d_ < (1<< (N4-1))) bitput(bw,br, N4+4,_d_<<4|8);\ else { unsigned _b = (bsr64(_d_)+7)>>3; bitput(bw,br,4+3,(_b-1)<<4); bitput64(bw,br, _b<<3, _d_,_op_); }\ bitenorm(bw,br,_op_);\ } while(0) size_t bitgenc64(uint64_t *in, size_t n, unsigned char *out, uint64_t start) { uint64_t *ip = in, pd = 0, *pp = in,dd; unsigned char *op = out, *out_ = out+n*sizeof(in[0]); bitdef(bw,br); if(n > 4) for(; ip < in+(n-1-4);) { start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto a; ip++; __builtin_prefetch(ip+256, 0); continue; a:; ENC64(pp,ip, dd, op); OVERFLOW; pp = ++ip; } for(;ip < in+n;) { start = ip[0] - start; dd = start-pd; pd = start; start = ip[0]; if(dd) goto b; ip++; continue; b:; ENC64(pp,ip, dd, op); OVERFLOW; pp = ++ip; } if(ip > pp) { start = ip[0] - start; dd = start-pd; ENC64(pp, ip, dd, op); OVERFLOW; } bitflush(bw,br,op); return op - out; } size_t bitgdec64(unsigned char *in, size_t n, uint64_t *out, uint64_t start) { if(!n) return 0; uint64_t *op = out, pd = 0; unsigned char *ip = in; bitdef(bw,br); for(bitdnorm(bw,br,ip); op < out+n; ) { __builtin_prefetch(ip+384, 0); uint64_t dd = bitpeek(bw,br); if(dd & 1) bitrmv(bw,br, 0+1), dd = 0; else if(dd & 2) bitrmv(bw,br,N2+2), dd = _bzhi_u64(dd>>2, N2); else if(dd & 4) bitrmv(bw,br,N3+3), dd = _bzhi_u64(dd>>3, N3); else if(dd & 8) bitrmv(bw,br,N4+4), dd = _bzhi_u64(dd>>4, N4); else { unsigned b; uint64_t r,*_op; bitget(bw,br, 4+3, b); if((b>>=4) <= 1) { // No compression, because of overflow if(b==1) { memcpy(out,in+1, n*sizeof(out[0])); return 1+n*sizeof(out[0]); } bitget(bw,br,3,b); bitget64(bw,br,(b+1)*8,r,ip); bitdnorm(bw,br,ip); //RLE //r+=NL; while(r--) *op++=(start+=pd); for(r+=NL, _op = op; op != _op+(r&~7); op += 8) op[0]=(start+=pd), op[1]=(start+=pd), op[2]=(start+=pd), op[3]=(start+=pd), op[4]=(start+=pd), op[5]=(start+=pd), op[6]=(start+=pd), op[7]=(start+=pd); for(; op != _op+r; op++) *op = (start+=pd); continue; } bitget64(bw,br,(b+1)<<3,dd,ip); } pd += zigzagdec64(dd); *op++ = (start += pd); bitdnorm(bw,br,ip); } bitalign(bw,br,ip); return ip - in; } #if 0 // Initial implementation without RLE #define N2 7 // for seconds time series #define N3 9 #define N4 12 size_t bitg0enc32(uint32_t *in, size_t n, unsigned char *out, uint32_t start) { uint32_t *ip, pd = 0; unsigned char *op = out; bitdef(bw,br); #define FE32(i) { uint32_t dd; start = ip[i] - start; dd = start-pd; pd = start; dd = zigzagenc32(dd); start = ip[i];\ if(!dd) bitput(bw,br, 1, 1);\ else if(dd < (1<< (N2-1))) bitput(bw,br, N2+2,dd<<2|2);\ else if(dd < (1<< (N3-1))) bitput(bw,br, N3+3,dd<<3|4);\ else if(dd < (1<< (N4-1))) bitput(bw,br, N4+4,dd<<4|8);\ else { unsigned _b = (bsr32(dd)+7)>>3; bitput(bw,br,4+2,(_b-1)<<4); bitput(bw,br, _b<<3, dd); }\ bitenorm(bw,br,op);\ } for(ip = in; ip != in + (n&~(4-1)); ip+=4) { __builtin_prefetch(ip+512, 0); FE32(0); FE32(1); FE32(2); FE32(3); } for( ; ip != in + n ; ip++ ) FE32(0); bitflush(bw,br,op); return op - out; } size_t bitg0dec32(unsigned char *in, size_t n, uint32_t *out, uint32_t start) { if(!n) return 0; uint32_t *op, pd = 0; unsigned char *ip = in; bitdef(bw,br); #define FD32(i) { uint32_t dd = bitpeek(bw,br);\ if(dd & 1) bitrmv(bw,br, 1+0), dd = 0;\ else if(dd & 2) bitrmv(bw,br,N2+2), dd = _bzhi_u32(dd>>2, N2);\ else if(dd & 4) bitrmv(bw,br,N3+3), dd = _bzhi_u32(dd>>3, N3);\ else if(dd & 8) bitrmv(bw,br,N4+4), dd = _bzhi_u32(dd>>4, N4);\ else { unsigned _b; bitget(bw,br,4+2,_b); bitget(bw,br,((_b>>4)+1)*8,dd); }\ pd += zigzagdec32(dd); op[i] = (start += pd); bitdnorm(bw,br,ip);\ } for(bitdnorm(bw,br,ip),op = out; op != out+(n&~(4-1)); op+=4) { FD32(0); FD32(1); FD32(2); FD32(3); __builtin_prefetch(ip+512, 0); } for(; op != out+n; op++) FD32(0); bitalign(bw,br,ip); return ip - in; } #define N2 6 // for seconds/milliseconds,... time series #define N3 12 #define N4 20 size_t bitg0enc64(uint64_t *in, size_t n, unsigned char *out, uint64_t start) { uint64_t *ip, pd = 0; unsigned char *op = out; bitdef(bw,br); #define FE64(i) { uint64_t dd; start = (int64_t)ip[i] - (int64_t)start; dd = (int64_t)start-(int64_t)pd; pd = start; dd = zigzagenc64(dd); start = ip[i];\ if(!dd) bitput(bw,br, 1, 1);\ else if(dd < (1<< (N2-1))) bitput(bw,br, N2+2,dd<<2|2);\ else if(dd < (1<< (N3-1))) bitput(bw,br, N3+3,dd<<3|4);\ else if(dd < (1<< (N4-1))) bitput(bw,br, N4+4,dd<<4|8);\ else { unsigned _b = (bsr64(dd)+7)>>3; bitput(bw,br,3+4,(_b-1)<<4); bitput64(bw,br, _b<<3, dd, op); }\ bitenorm(bw,br,op);\ } for(ip = in; ip != in + (n&~(4-1)); ip+=4) { __builtin_prefetch(ip+512, 0); FE64(0); FE64(1); FE64(2); FE64(3); } for( ; ip != in + n ; ip++ ) FE64(0); bitflush(bw,br,op); return op - out; } size_t bitg0dec64(unsigned char *in, size_t n, uint64_t *out, uint64_t start) { if(!n) return 0; uint64_t *op, pd = 0; unsigned char *ip = in; bitdef(bw,br); #define FD64(i) { uint64_t dd = bitpeek(bw,br);\ if(dd & 1) bitrmv(bw,br, 1+0), dd = 0;\ else if(dd & 2) bitrmv(bw,br,N2+2), dd = _bzhi_u64(dd>>2, N2);\ else if(dd & 4) bitrmv(bw,br,N3+3), dd = _bzhi_u64(dd>>3, N3);\ else if(dd & 8) bitrmv(bw,br,N4+4), dd = _bzhi_u64(dd>>4, N4);\ else { unsigned _b; bitget(bw,br,4+3,_b); _b = ((_b>>4)+1)*8; bitget64(bw,br,_b,dd,ip); }\ pd += zigzagdec64(dd); start += pd; op[i] = start; bitdnorm(bw,br,ip);\ } for(bitdnorm(bw,br,ip),op = out; op != out+(n&~(4-1)); op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); __builtin_prefetch(ip+512, 0); } for(; op != out+n; op++) FD64(0); bitalign(bw,br,ip); return ip - in; } #endif