/** Copyright (C) powturbo 2013-2019 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - homepage : https://sites.google.com/site/powturbo/ - github : https://github.com/powturbo - twitter : https://twitter.com/powturbo - email : powturbo [_AT_] gmail [_DOT_] com **/ // "Integer Compression: max.bits, delta, zigzag, xor" #ifdef BITUTIL_IN #ifdef __AVX2__ #include #elif defined(__AVX__) #include #elif defined(__SSE4_1__) #include #elif defined(__SSSE3__) #ifdef __powerpc64__ #define __SSE__ 1 #define __SSE2__ 1 #define __SSE3__ 1 #define NO_WARN_X86_INTRINSICS 1 #endif #include #elif defined(__SSE2__) #include #elif defined(__ARM_NEON) #include #endif #if defined(_MSC_VER) && _MSC_VER < 1600 #include "vs/stdint.h" #else #include #endif #include "sse_neon.h" #ifdef __ARM_NEON #define PREFETCH(_ip_,_rw_) #else #define PREFETCH(_ip_,_rw_) __builtin_prefetch(_ip_,_rw_) #endif //------------------------ zigzag encoding ------------------------------------------------------------- static inline unsigned char zigzagenc8( signed char x) { return x << 1 ^ x >> 7; } static inline char zigzagdec8( unsigned char x) { return x >> 1 ^ -(x & 1); } static inline unsigned short zigzagenc16(short x) { return x << 1 ^ x >> 15; } static inline short zigzagdec16(unsigned short x) { return x >> 1 ^ -(x & 1); } static inline unsigned zigzagenc32(int x) { return x << 1 ^ x >> 31; } static inline int zigzagdec32(unsigned x) { return x >> 1 ^ -(x & 1); } static inline uint64_t zigzagenc64(int64_t x) { return x << 1 ^ x >> 63; } static inline int64_t zigzagdec64(uint64_t x) { return x >> 1 ^ -(x & 1); } #if defined(__SSE2__) || defined(__ARM_NEON) static ALWAYS_INLINE __m128i mm_zzage_epi16(__m128i v) { return _mm_xor_si128(_mm_slli_epi16(v,1), _mm_srai_epi16(v,15)); } static ALWAYS_INLINE __m128i mm_zzage_epi32(__m128i v) { return _mm_xor_si128(_mm_slli_epi32(v,1), _mm_srai_epi32(v,31)); } //static ALWAYS_INLINE __m128i mm_zzage_epi64(__m128i v) { return _mm_xor_si128(_mm_slli_epi64(v,1), _mm_srai_epi64(v,63)); } static ALWAYS_INLINE __m128i mm_zzagd_epi16(__m128i v) { return _mm_xor_si128(_mm_srli_epi16(v,1), _mm_srai_epi16(_mm_slli_epi16(v,15),15) ); } static ALWAYS_INLINE __m128i mm_zzagd_epi32(__m128i v) { return _mm_xor_si128(_mm_srli_epi32(v,1), _mm_srai_epi32(_mm_slli_epi32(v,31),31) ); } //static ALWAYS_INLINE __m128i mm_zzagd_epi64(__m128i v) { return _mm_xor_si128(_mm_srli_epi64(v,1), _mm_srai_epi64(_mm_slli_epi64(v,63),63) ); } #endif #ifdef __AVX2__ static ALWAYS_INLINE __m256i mm256_zzage_epi32(__m256i v) { return _mm256_xor_si256(_mm256_slli_epi32(v,1), _mm256_srai_epi32(v,31)); } static ALWAYS_INLINE __m256i mm256_zzagd_epi32(__m256i v) { return _mm256_xor_si256(_mm256_srli_epi32(v,1), _mm256_srai_epi32(_mm256_slli_epi32(v,31),31) ); } #endif //-------------- AVX2 delta + prefix sum (scan) / xor encode/decode --------------------------------------------------------------------------------------- #ifdef __AVX2__ static ALWAYS_INLINE __m256i mm256_delta_epi32(__m256i v, __m256i sv) { return _mm256_sub_epi32(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 12)); } static ALWAYS_INLINE __m256i mm256_delta_epi64(__m256i v, __m256i sv) { return _mm256_sub_epi64(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 8)); } static ALWAYS_INLINE __m256i mm256_xore_epi32( __m256i v, __m256i sv) { return _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 12)); } static ALWAYS_INLINE __m256i mm256_xore_epi64( __m256i v, __m256i sv) { return _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2f128_si256(sv, v, _MM_SHUFFLE(0, 2, 0, 1)), 8)); } static ALWAYS_INLINE __m256i mm256_scan_epi32(__m256i v, __m256i sv) { v = _mm256_add_epi32(v, _mm256_slli_si256(v, 4)); v = _mm256_add_epi32(v, _mm256_slli_si256(v, 8)); return _mm256_add_epi32( _mm256_permute2x128_si256( _mm256_shuffle_epi32(sv,_MM_SHUFFLE(3, 3, 3, 3)), sv, 0x11), _mm256_add_epi32(v, _mm256_permute2x128_si256(_mm256_setzero_si256(),_mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 3, 3)), 0x20))); } static ALWAYS_INLINE __m256i mm256_xord_epi32(__m256i v, __m256i sv) { v = _mm256_xor_si256(v, _mm256_slli_si256(v, 4)); v = _mm256_xor_si256(v, _mm256_slli_si256(v, 8)); return _mm256_xor_si256( _mm256_permute2x128_si256( _mm256_shuffle_epi32(sv,_MM_SHUFFLE(3, 3, 3, 3)), sv, 0x11), _mm256_xor_si256(v, _mm256_permute2x128_si256(_mm256_setzero_si256(),_mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 3, 3)), 0x20))); } static ALWAYS_INLINE __m256i mm256_scan_epi64(__m256i v, __m256i sv) { v = _mm256_add_epi64(v, _mm256_alignr_epi8(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), 8)); return _mm256_add_epi64(_mm256_permute4x64_epi64(sv, _MM_SHUFFLE(3, 3, 3, 3)), _mm256_add_epi64(_mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), v) ); } static ALWAYS_INLINE __m256i mm256_xord_epi64(__m256i v, __m256i sv) { v = _mm256_xor_si256(v, _mm256_alignr_epi8(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), 8)); return _mm256_xor_si256(_mm256_permute4x64_epi64(sv, _MM_SHUFFLE(3, 3, 3, 3)), _mm256_xor_si256(_mm256_permute2x128_si256(v, v, _MM_SHUFFLE(0, 0, 2, 0)), v) ); } static ALWAYS_INLINE __m256i mm256_scani_epi32(__m256i v, __m256i sv, __m256i vi) { return _mm256_add_epi32(mm256_scan_epi32(v, sv), vi); } #endif #if defined(__SSSE3__) || defined(__ARM_NEON) static ALWAYS_INLINE __m128i mm_delta_epi16(__m128i v, __m128i sv) { return _mm_sub_epi16(v, _mm_alignr_epi8(v, sv, 14)); } static ALWAYS_INLINE __m128i mm_delta_epi32(__m128i v, __m128i sv) { return _mm_sub_epi32(v, _mm_alignr_epi8(v, sv, 12)); } static ALWAYS_INLINE __m128i mm_xore_epi16( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 14)); } static ALWAYS_INLINE __m128i mm_xore_epi32( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_alignr_epi8(v, sv, 12)); } #define MM_HDEC_EPI32(_v_,_sv_,_hop_) { _v_ = _hop_(_v_, _mm_slli_si128(_v_, 4)); _v_ = _hop_(mm_shuffle_nnnn_epi32(_sv_, 3), _hop_(_mm_slli_si128(_v_, 8), _v_)); } static ALWAYS_INLINE __m128i mm_scan_epi32(__m128i v, __m128i sv) { MM_HDEC_EPI32(v,sv,_mm_add_epi32); return v; } static ALWAYS_INLINE __m128i mm_xord_epi32(__m128i v, __m128i sv) { MM_HDEC_EPI32(v,sv,_mm_xor_si128); return v; } #define MM_HDEC_EPI16(_v_,_sv_,_hop_) {\ _v_ = _hop_( _v_, _mm_slli_si128(_v_, 2));\ _v_ = _hop_( _v_, _mm_slli_si128(_v_, 4));\ _v_ = _hop_(_hop_(_v_, _mm_slli_si128(_v_, 8)), _mm_shuffle_epi8(_sv_, _mm_set1_epi16(0x0f0e)));\ } static ALWAYS_INLINE __m128i mm_scan_epi16(__m128i v, __m128i sv) { MM_HDEC_EPI16(v,sv,_mm_add_epi16); return v; } static ALWAYS_INLINE __m128i mm_xord_epi16(__m128i v, __m128i sv) { MM_HDEC_EPI16(v,sv,_mm_xor_si128); return v; } //-------- scan with vi delta > 0 ----------------------------- static ALWAYS_INLINE __m128i mm_scani_epi16(__m128i v, __m128i sv, __m128i vi) { return _mm_add_epi16(mm_scan_epi16(v, sv), vi); } static ALWAYS_INLINE __m128i mm_scani_epi32(__m128i v, __m128i sv, __m128i vi) { return _mm_add_epi32(mm_scan_epi32(v, sv), vi); } #elif defined(__SSE2__) static ALWAYS_INLINE __m128i mm_delta_epi16(__m128i v, __m128i sv) { return _mm_sub_epi16(v, _mm_or_si128(_mm_srli_si128(sv, 14), _mm_slli_si128(v, 2))); } static ALWAYS_INLINE __m128i mm_xore_epi16( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_or_si128(_mm_srli_si128(sv, 14), _mm_slli_si128(v, 2))); } static ALWAYS_INLINE __m128i mm_delta_epi32(__m128i v, __m128i sv) { return _mm_sub_epi32(v, _mm_or_si128(_mm_srli_si128(sv, 12), _mm_slli_si128(v, 4))); } static ALWAYS_INLINE __m128i mm_xore_epi32( __m128i v, __m128i sv) { return _mm_xor_si128(v, _mm_or_si128(_mm_srli_si128(sv, 12), _mm_slli_si128(v, 4))); } #endif #if !defined(_M_X64) && !defined(__x86_64__) && defined(__AVX__) #define _mm256_extract_epi64(v, index) ((__int64)((uint64_t)(uint32_t)_mm256_extract_epi32((v), (index) * 2) | (((uint64_t)(uint32_t)_mm256_extract_epi32((v), (index) * 2 + 1)) << 32))) #endif //------------------ Horizontal OR ----------------------------------------------- #ifdef __AVX2__ static ALWAYS_INLINE unsigned mm256_hor_epi32(__m256i v) { v = _mm256_or_si256(v, _mm256_srli_si256(v, 8)); v = _mm256_or_si256(v, _mm256_srli_si256(v, 4)); return _mm256_extract_epi32(v,0) | _mm256_extract_epi32(v, 4); } static ALWAYS_INLINE uint64_t mm256_hor_epi64(__m256i v) { v = _mm256_or_si256(v, _mm256_permute2x128_si256(v, v, _MM_SHUFFLE(2, 0, 0, 1))); return _mm256_extract_epi64(v, 1) | _mm256_extract_epi64(v,0); } #endif #if defined(__SSE2__) || defined(__ARM_NEON) #define MM_HOZ_EPI16(v,_hop_) {\ v = _hop_(v, _mm_srli_si128(v, 8));\ v = _hop_(v, _mm_srli_si128(v, 6));\ v = _hop_(v, _mm_srli_si128(v, 4));\ v = _hop_(v, _mm_srli_si128(v, 2));\ } #define MM_HOZ_EPI32(v,_hop_) {\ v = _hop_(v, _mm_srli_si128(v, 8));\ v = _hop_(v, _mm_srli_si128(v, 4));\ } static ALWAYS_INLINE uint16_t mm_hor_epi16( __m128i v) { MM_HOZ_EPI16(v,_mm_or_si128); return (unsigned short)_mm_cvtsi128_si32(v); } static ALWAYS_INLINE uint32_t mm_hor_epi32( __m128i v) { MM_HOZ_EPI32(v,_mm_or_si128); return (unsigned )_mm_cvtsi128_si32(v); } static ALWAYS_INLINE uint64_t mm_hor_epi64( __m128i v) { v = _mm_or_si128( v, _mm_srli_si128(v, 8)); return (uint64_t )_mm_cvtsi128_si64(v); } #endif //----------------- sub / add ---------------------------------------------------------- #if defined(__SSE2__) || defined(__ARM_NEON) #define SUBI16x8(_v_, _sv_) _mm_sub_epi16(_v_, _sv_) #define SUBI32x4(_v_, _sv_) _mm_sub_epi32(_v_, _sv_) #define ADDI16x8(_v_, _sv_, _vi_) _sv_ = _mm_add_epi16(_mm_add_epi16(_sv_, _vi_),_v_) #define ADDI32x4(_v_, _sv_, _vi_) _sv_ = _mm_add_epi32(_mm_add_epi32(_sv_, _vi_),_v_) //---------------- Convert _mm_cvtsi128_siXX ------------------------------------------- static ALWAYS_INLINE uint8_t _mm_cvtsi128_si8 (__m128i v) { return (uint8_t )_mm_cvtsi128_si32(v); } static ALWAYS_INLINE uint16_t _mm_cvtsi128_si16(__m128i v) { return (uint16_t)_mm_cvtsi128_si32(v); } #endif //--------- memset ----------------------------------------- #define BITFORSET_(_out_, _n_, _start_, _mindelta_) do { unsigned _i;\ for(_i = 0; _i != (_n_&~3); _i+=4) { \ _out_[_i+0] = _start_+(_i )*_mindelta_; \ _out_[_i+1] = _start_+(_i+1)*_mindelta_; \ _out_[_i+2] = _start_+(_i+2)*_mindelta_; \ _out_[_i+3] = _start_+(_i+3)*_mindelta_; \ } \ while(_i != _n_) \ _out_[_i] = _start_+_i*_mindelta_, ++_i; \ } while(0) //--------- SIMD zero ----------------------------------------- #ifdef __AVX2__ #define BITZERO32(_out_, _n_, _start_) do {\ __m256i _sv_ = _mm256_set1_epi32(_start_), *_ov = (__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_);\ do _mm256_storeu_si256(_ov++, _sv_); while(_ov < _ove);\ } while(0) #define BITFORZERO32(_out_, _n_, _start_, _mindelta_) do {\ __m256i _sv = _mm256_set1_epi32(_start_), *_ov=(__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_), _cv = _mm256_set_epi32(7+_mindelta_,6+_mindelta_,5+_mindelta_,4+_mindelta_,3*_mindelta_,2*_mindelta_,1*_mindelta_,0); \ _sv = _mm256_add_epi32(_sv, _cv);\ _cv = _mm256_set1_epi32(4);\ do { _mm256_storeu_si256(_ov++, _sv); _sv = _mm256_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #define BITDIZERO32(_out_, _n_, _start_, _mindelta_) do { __m256i _sv = _mm256_set1_epi32(_start_), _cv = _mm256_set_epi32(7+_mindelta_,6+_mindelta_,5+_mindelta_,4+_mindelta_,3+_mindelta_,2+_mindelta_,1+_mindelta_,_mindelta_), *_ov=(__m256i *)(_out_), *_ove = (__m256i *)(_out_ + _n_);\ _sv = _mm256_add_epi32(_sv, _cv); _cv = _mm256_set1_epi32(4*_mindelta_); do { _mm256_storeu_si256(_ov++, _sv), _sv = _mm256_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #elif defined(__SSE2__) || defined(__ARM_NEON) // ------------- // SIMD set value (memset) #define BITZERO32(_out_, _n_, _v_) do {\ __m128i _sv_ = _mm_set1_epi32(_v_), *_ov = (__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_);\ do _mm_storeu_si128(_ov++, _sv_); while(_ov < _ove); \ } while(0) #define BITFORZERO32(_out_, _n_, _start_, _mindelta_) do {\ __m128i _sv = _mm_set1_epi32(_start_), *_ov=(__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_), _cv = _mm_set_epi32(3*_mindelta_,2*_mindelta_,1*_mindelta_,0); \ _sv = _mm_add_epi32(_sv, _cv);\ _cv = _mm_set1_epi32(4);\ do { _mm_storeu_si128(_ov++, _sv); _sv = _mm_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #define BITDIZERO32(_out_, _n_, _start_, _mindelta_) do { __m128i _sv = _mm_set1_epi32(_start_), _cv = _mm_set_epi32(3+_mindelta_,2+_mindelta_,1+_mindelta_,_mindelta_), *_ov=(__m128i *)(_out_), *_ove = (__m128i *)(_out_ + _n_);\ _sv = _mm_add_epi32(_sv, _cv); _cv = _mm_set1_epi32(4*_mindelta_); do { _mm_storeu_si128(_ov++, _sv), _sv = _mm_add_epi32(_sv, _cv); } while(_ov < _ove);\ } while(0) #else #define BITFORZERO32(_out_, _n_, _start_, _mindelta_) BITFORSET_(_out_, _n_, _start_, _mindelta_) #define BITZERO32( _out_, _n_, _start_) BITFORSET_(_out_, _n_, _start_, 0) #endif #define DELTR( _in_, _n_, _start_, _mindelta_, _out_) { unsigned _v; for( _v = 0; _v < _n_; _v++) _out_[_v] = _in_[_v] - (_start_) - _v*(_mindelta_) - (_mindelta_); } #define DELTRB(_in_, _n_, _start_, _mindelta_, _b_, _out_) { unsigned _v; for(_b_=0,_v = 0; _v < _n_; _v++) _out_[_v] = _in_[_v] - (_start_) - _v*(_mindelta_) - (_mindelta_), _b_ |= _out_[_v]; _b_ = bsr32(_b_); } //----------------------------------------- bitreverse scalar + SIMD ------------------------------------------- #if __clang__ //__has_builtin(__builtin_bitreverse64) #define rbit8(x) __builtin_bitreverse8( x) #define rbit16(x) __builtin_bitreverse16(x) #define rbit32(x) __builtin_bitreverse32(x) #define rbit64(x) __builtin_bitreverse64(x) #else #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) static ALWAYS_INLINE uint32_t _rbit_(uint32_t x) { uint32_t rc; __asm volatile ("rbit %0, %1" : "=r" (rc) : "r" (x) ); } #endif static ALWAYS_INLINE uint8_t rbit8(uint8_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return _rbit_(x) >> 24; #elif 0 x = (x & 0xaa) >> 1 | (x & 0x55) << 1; x = (x & 0xcc) >> 2 | (x & 0x33) << 2; return x << 4 | x >> 4; #else return (x * 0x0202020202ull & 0x010884422010ull) % 1023; #endif } static ALWAYS_INLINE uint16_t rbit16(uint16_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return _rbit_(x) >> 16; #else x = (x & 0xaaaa) >> 1 | (x & 0x5555) << 1; x = (x & 0xcccc) >> 2 | (x & 0x3333) << 2; x = (x & 0xf0f0) >> 4 | (x & 0x0f0f) << 4; return x << 8 | x >> 8; #endif } static ALWAYS_INLINE uint32_t rbit32(uint32_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return _rbit_(x); #else x = ((x & 0xaaaaaaaa) >> 1 | (x & 0x55555555) << 1); x = ((x & 0xcccccccc) >> 2 | (x & 0x33333333) << 2); x = ((x & 0xf0f0f0f0) >> 4 | (x & 0x0f0f0f0f) << 4); x = ((x & 0xff00ff00) >> 8 | (x & 0x00ff00ff) << 8); return x << 16 | x >> 16; #endif } static ALWAYS_INLINE uint64_t rbit64(uint64_t x) { #if (__CORTEX_M >= 0x03u) || (__CORTEX_SC >= 300u) return (uint64_t)_rbit_(x) << 32 | _rbit_(x >> 32); #else x = (x & 0xaaaaaaaaaaaaaaaa) >> 1 | (x & 0x5555555555555555) << 1; x = (x & 0xcccccccccccccccc) >> 2 | (x & 0x3333333333333333) << 2; x = (x & 0xf0f0f0f0f0f0f0f0) >> 4 | (x & 0x0f0f0f0f0f0f0f0f) << 4; x = (x & 0xff00ff00ff00ff00) >> 8 | (x & 0x00ff00ff00ff00ff) << 8; x = (x & 0xffff0000ffff0000) >> 16 | (x & 0x0000ffff0000ffff) << 16; return x << 32 | x >> 32; #endif } #endif #if defined(__SSSE3__) || defined(__ARM_NEON) static ALWAYS_INLINE __m128i mm_rbit_epi16(__m128i v) { return mm_rbit_epi8(mm_rev_epi16(v)); } static ALWAYS_INLINE __m128i mm_rbit_epi32(__m128i v) { return mm_rbit_epi8(mm_rev_epi32(v)); } static ALWAYS_INLINE __m128i mm_rbit_epi64(__m128i v) { return mm_rbit_epi8(mm_rev_epi64(v)); } //static ALWAYS_INLINE __m128i mm_rbit_si128(__m128i v) { return mm_rbit_epi8(mm_rev_si128(v)); } #endif #ifdef __AVX2__ static ALWAYS_INLINE __m256i mm256_rbit_epi8(__m256i v) { __m256i fv = _mm256_setr_epi8(0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15, 0, 8, 4,12, 2,10, 6,14, 1, 9, 5,13, 3,11, 7,15), cv0f_8 = _mm256_set1_epi8(0xf); __m256i lv = _mm256_shuffle_epi8(fv,_mm256_and_si256( v, cv0f_8)); __m256i hv = _mm256_shuffle_epi8(fv,_mm256_and_si256(_mm256_srli_epi64(v, 4), cv0f_8)); return _mm256_or_si256(_mm256_slli_epi64(lv,4), hv); } static ALWAYS_INLINE __m256i mm256_rev_epi16(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14, 1, 0, 3, 2, 5, 4, 7, 6, 9, 8,11,10,13,12,15,14)); } static ALWAYS_INLINE __m256i mm256_rev_epi32(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 3, 2, 1, 0, 7, 6, 5, 4, 11,10, 9, 8,15,14,13,12, 3, 2, 1, 0, 7, 6, 5, 4, 11,10, 9, 8,15,14,13,12)); } static ALWAYS_INLINE __m256i mm256_rev_epi64(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8( 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8)); } static ALWAYS_INLINE __m256i mm256_rev_si128(__m256i v) { return _mm256_shuffle_epi8(v, _mm256_setr_epi8(15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)); } static ALWAYS_INLINE __m256i mm256_rbit_epi16(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi16(v)); } static ALWAYS_INLINE __m256i mm256_rbit_epi32(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi32(v)); } static ALWAYS_INLINE __m256i mm256_rbit_epi64(__m256i v) { return mm256_rbit_epi8(mm256_rev_epi64(v)); } static ALWAYS_INLINE __m256i mm256_rbit_si128(__m256i v) { return mm256_rbit_epi8(mm256_rev_si128(v)); } #endif #endif //---------- max. bit length + transform for sorted/unsorted arrays, delta,delta 1, delta > 1, zigzag, zigzag of delta, xor, FOR,---------------- #ifdef __cplusplus extern "C" { #endif //------ ORed array, for maximum bit length of the elements in the unsorted integer array --------------------- uint8_t bit8( uint8_t *in, unsigned n, uint8_t *px); uint16_t bit16(uint16_t *in, unsigned n, uint16_t *px); uint32_t bit32(uint32_t *in, unsigned n, uint32_t *px); uint64_t bit64(uint64_t *in, unsigned n, uint64_t *px); //-------------- delta = 0: Sorted integer array w/ mindelta = 0 ---------------------------------------------- //-- ORed array, maximum bit length of the non decreasing integer array. out[i] = in[i] - in[i-1] uint8_t bitd8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitd16(uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitd32(uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitd64(uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //-- in-place reverse delta 0 void bitddec8( uint8_t *p, unsigned n, uint8_t start); // non decreasing (out[i] = in[i] - in[i-1]) void bitddec16( uint16_t *p, unsigned n, uint16_t start); void bitddec32( uint32_t *p, unsigned n, uint32_t start); void bitddec64( uint64_t *p, unsigned n, uint64_t start); //-- vectorized fast delta4 one: out[0] = in[4]-in[0], out[1]=in[5]-in[1], out[2]=in[6]-in[2], out[3]=in[7]-in[3],... uint16_t bits128v16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bits128v32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start); //------------- delta = 1: Sorted integer array w/ mindelta = 1 --------------------------------------------- //-- get delta maximum bit length of the non strictly decreasing integer array. out[i] = in[i] - in[i-1] - 1 uint8_t bitd18( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitd116(uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitd132(uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitd164(uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //-- in-place reverse delta one void bitd1dec8( uint8_t *p, unsigned n, uint8_t start); // non strictly decreasing (out[i] = in[i] - in[i-1] - 1) void bitd1dec16( uint16_t *p, unsigned n, uint16_t start); void bitd1dec32( uint32_t *p, unsigned n, uint32_t start); void bitd1dec64( uint64_t *p, unsigned n, uint64_t start); //------------- delta > 1: Sorted integer array w/ mindelta > 1 --------------------------------------------- //-- ORed array, for max. bit length get min. delta () uint8_t bitdi8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitdi16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitdi32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitdi64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //-- transform sorted integer array to delta array: out[i] = in[i] - in[i-1] - mindelta uint8_t bitdienc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start, uint8_t mindelta); uint16_t bitdienc16(uint16_t *in, unsigned n, uint16_t *out, uint16_t start, uint16_t mindelta); uint32_t bitdienc32(uint32_t *in, unsigned n, uint32_t *out, uint32_t start, uint32_t mindelta); uint64_t bitdienc64(uint64_t *in, unsigned n, uint64_t *out, uint64_t start, uint64_t mindelta); //-- in-place reverse delta void bitdidec8( uint8_t *in, unsigned n, uint8_t start, uint8_t mindelta); void bitdidec16(uint16_t *in, unsigned n, uint16_t start, uint16_t mindelta); void bitdidec32(uint32_t *in, unsigned n, uint32_t start, uint32_t mindelta); void bitdidec64(uint64_t *in, unsigned n, uint64_t start, uint64_t mindelta); //------------- FOR : array bit length: --------------------------------------------------------------------- //------ ORed array, for max. bit length of the non decreasing integer array. out[i] = in[i] - start uint8_t bitf8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitf16(uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitf32(uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitf64(uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //------ ORed array, for max. bit length of the non strictly decreasing integer array out[i] = in[i] - 1 - start uint8_t bitf18( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitf116(uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitf132(uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitf164(uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //------ ORed array, for max. bit length for usorted array uint8_t bitfm8( uint8_t *in, unsigned n, uint8_t *px, uint8_t *pmin); // unsorted uint16_t bitfm16(uint16_t *in, unsigned n, uint16_t *px, uint16_t *pmin); uint32_t bitfm32(uint32_t *in, unsigned n, uint32_t *px, uint32_t *pmin); uint64_t bitfm64(uint64_t *in, unsigned n, uint64_t *px, uint64_t *pmin); //------------- Zigzag encoding for unsorted integer lists: out[i] = in[i] - in[i-1] ------------------------ //-- ORed array, to get maximum zigzag bit length integer array uint8_t bitz8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitz16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitz32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitz64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //-- Zigzag transform uint8_t bitzenc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start, uint8_t mindelta); uint16_t bitzenc16(uint16_t *in, unsigned n, uint16_t *out, uint16_t start, uint16_t mindelta); uint32_t bitzenc32(uint32_t *in, unsigned n, uint32_t *out, uint32_t start, uint32_t mindelta); uint64_t bitzenc64(uint64_t *in, unsigned n, uint64_t *out, uint64_t start, uint64_t mindelta); //-- in-place zigzag reverse transform void bitzdec8( uint8_t *in, unsigned n, uint8_t start); void bitzdec16( uint16_t *in, unsigned n, uint16_t start); void bitzdec32( uint32_t *in, unsigned n, uint32_t start); void bitzdec64( uint64_t *in, unsigned n, uint64_t start); //------------- Zigzag of zigzag/delta : unsorted/sorted integer array ---------------------------------------------------- //-- get delta maximum bit length of the non strictly decreasing integer array. out[i] = in[i] - in[i-1] - 1 uint8_t bitzz8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitzz16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitzz32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitzz64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start); uint8_t bitzzenc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start, uint8_t mindelta); uint16_t bitzzenc16(uint16_t *in, unsigned n, uint16_t *out, uint16_t start, uint16_t mindelta); uint32_t bitzzenc32(uint32_t *in, unsigned n, uint32_t *out, uint32_t start, uint32_t mindelta); uint64_t bitzzenc64(uint64_t *in, unsigned n, uint64_t *out, uint64_t start, uint64_t mindelta); //-- in-place reverse zigzag of delta (encoded w/ bitdiencNN and parameter mindelta = 1) void bitzzdec8( uint8_t *in, unsigned n, uint8_t start); // non strictly decreasing (out[i] = in[i] - in[i-1] - 1) void bitzzdec16( uint16_t *in, unsigned n, uint16_t start); void bitzzdec32( uint32_t *in, unsigned n, uint32_t start); void bitzzdec64( uint64_t *in, unsigned n, uint64_t start); //------------- XOR encoding for unsorted integer lists: out[i] = in[i] - in[i-1] ------------- //-- ORed array, to get maximum zigzag bit length integer array uint8_t bitx8( uint8_t *in, unsigned n, uint8_t *px, uint8_t start); uint16_t bitx16( uint16_t *in, unsigned n, uint16_t *px, uint16_t start); uint32_t bitx32( uint32_t *in, unsigned n, uint32_t *px, uint32_t start); uint64_t bitx64( uint64_t *in, unsigned n, uint64_t *px, uint64_t start); //-- XOR transform uint8_t bitxenc8( uint8_t *in, unsigned n, uint8_t *out, uint8_t start); uint16_t bitxenc16( uint16_t *in, unsigned n, uint16_t *out, uint16_t start); uint32_t bitxenc32( uint32_t *in, unsigned n, uint32_t *out, uint32_t start); uint64_t bitxenc64( uint64_t *in, unsigned n, uint64_t *out, uint64_t start); //-- XOR in-place reverse transform void bitxdec8( uint8_t *p, unsigned n, uint8_t start); void bitxdec16( uint16_t *p, unsigned n, uint16_t start); void bitxdec32( uint32_t *p, unsigned n, uint32_t start); void bitxdec64( uint64_t *p, unsigned n, uint64_t start); //------- Lossy floating point transform: pad the trailing mantissa bits with zeros according to the error e (ex. e=0.00001) #ifdef USE_FLOAT16 void fppad16(_Float16 *in, size_t n, _Float16 *out, float e); #endif void fppad32(float *in, size_t n, float *out, float e); void fppad64(double *in, size_t n, double *out, double e); #ifdef __cplusplus } #endif //---- Floating point to Integer decomposition --------------------------------- // seeeeeeee21098765432109876543210 (s:sign, e:exponent, 0-9:mantissa) #ifdef BITUTIL_IN #define MANTF32 23 #define MANTF64 52 #define BITFENC(_u_, _sgn_, _expo_, _mant_, _mantbits_, _one_) _sgn_ = _u_ >> (sizeof(_u_)*8-1); _expo_ = ((_u_ >> (_mantbits_)) & ( (_one_<<(sizeof(_u_)*8 - 1 - _mantbits_)) -1)); _mant_ = _u_ & ((_one_<<_mantbits_)-1); #define BITFDEC( _sgn_, _expo_, _mant_, _u_, _mantbits_) _u_ = (_sgn_) << (sizeof(_u_)*8-1) | (_expo_) << _mantbits_ | (_mant_) #endif