/** Copyright (C) powturbo 2013-2018 GPL v2 License This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - homepage : https://sites.google.com/site/powturbo/ - github : https://github.com/powturbo - twitter : https://twitter.com/powturbo - email : powturbo [_AT_] gmail [_DOT_] com **/ // "Floating Point/Integer Compression" #pragma warning( disable : 4005) #pragma warning( disable : 4090) #pragma warning( disable : 4068) #include "conf.h" #include "vp4.h" #include "fp.h" #include "bitutil.h" #define VSIZE 128 // Unlike almost floating point compressors, we are using the better zigzag encoding instead the XOR technique. //#define ENC64(u,h) ((u)^(h)) //#define DEC64(u,h) ((u)^(h)) #define ENC64(u,h) zigzagenc64((int64_t)u-(int64_t)h) #define DEC64(u,h) zigzagdec64(u)+(int64_t)h //---- Last value Predictor unsigned char *fppenc64(uint64_t *in, unsigned n, unsigned char *out, uint64_t start) { uint64_t *ip, _p[VSIZE], *p; #define FE64(i) { uint64_t u = ip[i]; p[i] = ENC64(u, start); start = u; } for(ip = in; ip != in + (n&~(VSIZE-1)); ) { for(p = _p; p != &_p[VSIZE]; p+=4,ip+=4) { FE64(0); FE64(1); FE64(2); FE64(3); } out = p4enc64(_p, VSIZE, out); __builtin_prefetch(ip+512, 0); } if(n = ((uint64_t *)in+n)-ip) { for(p = _p; p != &_p[n]; p++,ip++) FE64(0); out = p4enc64(_p, n, out); } return out; } unsigned char *fppdec64(unsigned char *in, unsigned n, uint64_t *out, uint64_t start) { uint64_t *op, _p[VSIZE+32],*p; #define FD64(i) { uint64_t u = DEC64(p[i], start); op[i] = u; start = u; } for(op = (uint64_t*)out; op != out+(n&~(VSIZE-1)); ) { __builtin_prefetch(in+512, 0); for(in = p4dec64(in, VSIZE, _p), p = _p; p != &_p[VSIZE]; p+=4,op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); } } if(n = ((uint64_t *)out+n) - op) for(in = p4dec64(in, n, _p), p = _p; p != &_p[n]; p++,op++) FD64(0); return in; } // delta of delta unsigned char *fpddenc64(uint64_t *in, unsigned n, unsigned char *out, uint64_t start) { uint64_t *ip, _p[VSIZE], *p; int64_t pd=0; #define FE64(i) { uint64_t u = ip[i],d = u-start; p[i] = ENC64((int64_t)d,pd); pd = d; start = u; } for(ip = (uint64_t *)in; ip != in + (n&~(VSIZE-1)); ) { for(p = _p; p != &_p[VSIZE]; p+=4,ip+=4) { FE64(0); FE64(1); FE64(2); FE64(3); } out = p4enc64(_p, VSIZE, out); __builtin_prefetch(ip+512, 0); } if(n = ((uint64_t *)in+n)-ip) { for(p = _p; p != &_p[n]; p++,ip++) FE64(0); out = p4enc64(_p, n, out); } return out; } unsigned char *fpdddec64(unsigned char *in, unsigned n, uint64_t *out, uint64_t start) { uint64_t *op, h = 0, _p[VSIZE+32],*p, pd=0; #define FD64(i) { uint64_t u = DEC64(p[i],start+pd); op[i] = u; pd = u - start; start = u; } for(op = out; op != out+(n&~(VSIZE-1)); ) { __builtin_prefetch(in+512, 0); for(in = p4dec64(in, VSIZE, _p), p = _p; p != &_p[VSIZE]; p+=4,op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); } } if(n = ((uint64_t *)out+n) - op) for(in = p4dec64(in, n, _p), p = _p; p != &_p[n]; p++,op++) FD64(0); return in; } #define HBITS 13 //15 #define HASH64(_h_,_u_) (((_h_)<<5 ^ (_u_)>>50) & ((1u<>3), _bw_ >>=(_br_&~7), _br_ &= 7 #define bitflush( _bw_,_br_,_op_) ctou64(_op_) = _bw_, _op_ += (_br_+7)>>3, _bw_=_br_=0 #ifdef __AVX2__ #include #else #define _bzhi_u64(_u_, _b_) ((_u_) & ((1ull<<(_b_))-1)) #define _bzhi_u32(_u_, _b_) ((_u_) & ((1u <<(_b_))-1)) #endif #define bitpeek32( _bw_,_br_,_nb_) _bzhi_u32(_bw_>>_br_, _nb_) #define bitpeek64( _bw_,_br_,_nb_) _bzhi_u64(_bw_>>_br_, _nb_) #define bitpeek( _bw_,_br_) (_bw_>>_br_) #define bitrmv( _bw_,_br_,_nb_) _br_ += _nb_ #define bitget( _bw_,_br_,_nb_,_x_) _x_ = bitpeek64(_bw_, _br_, _nb_), bitrmv(_bw_, _br_, _nb_) #define bitdnorm( _bw_,_br_,_ip_) _bw_ = ctou64(_ip_ += (_br_>>3)), _br_ &= 7 #define bitalign( _bw_,_br_,_ip_) _ip_ += (_br_+7)>>3 #define bitput64(bw,br,_b_,_x_,_op_) if(_b_>45) { bitput(bw,br,_b_-32, (_x_)>>32); bitenorm(bw,br,_op_); bitput(bw,br,32,(unsigned)(_x_)); } else bitput(bw,br,_b_,_x_); #define bitget64(bw,br,_b_,_x_,_ip_) if(_b_>45) { unsigned _v; bitget(bw,br,_b_-32,_x_); bitdnorm(bw,br,_ip_); bitget(bw,br,32,_v); _x_ = _x_<<32|_v; } else bitget(bw,br,_b_,_x_); // Fastest Gorilla (see Facebook paper) Floating point/Integer compression implementation using zigzag encoding instead of XOR. Compression 5 GB/s, Decompression: 10 GB/s unsigned char *fpgenc64(uint64_t *in, unsigned n, unsigned char *out, uint64_t start) { uint64_t *ip; unsigned ol = 0,ot = 0; bitdef(bw,br); #define FE64(i) { uint64_t z = ENC64(ip[i], start); start = ip[i];\ if(likely(!z)) bitput( bw,br, 1, 1);\ else { unsigned t = ctz64(z), l = clz64(z); l = l>31?31:l;\ if(l >= ol && t >= ot) { bitput( bw,br, 2, 2); l = 64 - ol - ot; z>>=ot; bitput64(bw,br, l, z,out); }\ else { bitput( bw,br, 2+6+5, (t-1)<<5|l); ol = 64 - l - t; z>>= t; bitput64(bw,br, ol, z,out); ol = l; ot = t; } \ } bitenorm(bw,br,out);\ } for(ip = in; ip != in + (n&~(4-1)); ip+=4) { __builtin_prefetch(ip+512, 0); FE64(0); FE64(1); FE64(2); FE64(3); } for( ; ip != in + n ; ip++ ) FE64(0); bitflush(bw,br,out); return out; } unsigned char *fpgdec64(unsigned char *in, unsigned n, uint64_t *out, uint64_t start) { if(!n) return in; uint64_t *op; unsigned ol = 0,ot = 0,x; bitdef(bw,br); #define FD64(i) { uint64_t z=0; unsigned _x; bitget(bw,br,1,_x); \ if(likely(!_x)) { bitget(bw,br,1,_x);\ if(!_x) { bitget(bw,br,11,_x); ot = (_x>>5)+1; ol = _x & 31; } bitget64(bw,br,64 - ol - ot,z,in); z<<=ot;\ } op[i] = start = DEC64(z, start); bitdnorm(bw,br,in);\ } for(bitdnorm(bw,br,in),op = out; op != out+(n&~(4-1)); op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); __builtin_prefetch(in+512, 0); } for( ; op != out+n; op++) FD64(0); return bitalign(bw,br,in); } // Improved Gorilla style compression with sliding double delta for timestamps in time series. #define N2 7 // for seconds time series #define N3 9 #define N4 12 unsigned char *bitgenc32(uint32_t *in, unsigned n, unsigned char *out, uint32_t start) { uint32_t *ip, pd = 0; bitdef(bw,br); #define FE32(i) { uint32_t dd; start = ip[i] - start; dd = start-pd; pd = start; dd = zigzagenc32(dd); start = ip[i];\ if(!dd) bitput(bw,br, 1, 1);\ else if(dd < (1<< (N2-1))) bitput(bw,br, N2+2,dd<<2|2);\ else if(dd < (1<< (N3-1))) bitput(bw,br, N3+3,dd<<3|4);\ else if(dd < (1<< (N4-1))) bitput(bw,br, N4+4,dd<<4|8);\ else { unsigned _b = (bsr32(dd)+7)>>3; bitput(bw,br,4+2,(_b-1)<<4); bitput(bw,br, _b<<3, dd); }\ bitenorm(bw,br,out);\ } for(ip = in; ip != in + (n&~(4-1)); ip+=4) { __builtin_prefetch(ip+512, 0); FE32(0); FE32(1); FE32(2); FE32(3); } for( ; ip != in + n ; ip++ ) FE32(0); bitflush(bw,br,out); return out; } unsigned char *bitgdec32(unsigned char *in, unsigned n, uint32_t *out, uint32_t start) { if(!n) return in; uint32_t *op, pd = 0; bitdef(bw,br); #define FD32(i) { uint32_t dd = bitpeek(bw,br);\ if(dd & 1) bitrmv(bw,br, 1+0), dd = 0;\ else if(dd & 2) bitrmv(bw,br,N2+2), dd = _bzhi_u32(dd>>2, N2);\ else if(dd & 4) bitrmv(bw,br,N3+3), dd = _bzhi_u32(dd>>3, N3);\ else if(dd & 8) bitrmv(bw,br,N4+4), dd = _bzhi_u32(dd>>4, N4);\ else { unsigned _b; bitget(bw,br,4+2,_b); bitget(bw,br,((_b>>4)+1)*8,dd); }\ pd += zigzagdec32(dd); op[i] = (start += pd); bitdnorm(bw,br,in);\ } for(bitdnorm(bw,br,in),op = out; op != out+(n&~(4-1)); op+=4) { FD32(0); FD32(1); FD32(2); FD32(3); __builtin_prefetch(in+512, 0); } for(; op != out+n; op++) FD32(0); return bitalign(bw,br,in); } #define N2 6 // for seconds/milliseconds,... time series #define N3 12 #define N4 20 unsigned char *bitgenc64(uint64_t *in, unsigned n, unsigned char *out, uint64_t start) { uint64_t *ip, pd = 0; bitdef(bw,br); #define FE64(i) { uint64_t dd; start = ip[i] - start; dd = start-pd; pd = start; dd = zigzagenc64(dd); start = ip[i];\ if(!dd) bitput(bw,br, 1, 1);\ else if(dd < (1<< (N2-1))) bitput(bw,br, N2+2,dd<<2|2);\ else if(dd < (1<< (N3-1))) bitput(bw,br, N3+3,dd<<3|4);\ else if(dd < (1<< (N4-1))) bitput(bw,br, N4+4,dd<<4|8);\ else { unsigned _b = (bsr64(dd)+7)>>3; bitput(bw,br,3+4,(_b-1)<<4); bitput64(bw,br, _b<<3, dd, out); }\ bitenorm(bw,br,out);\ } for(ip = in; ip != in + (n&~(4-1)); ip+=4) { __builtin_prefetch(ip+512, 0); FE64(0); FE64(1); FE64(2); FE64(3); } for( ; ip != in + n ; ip++ ) FE64(0); bitflush(bw,br,out); return out; } unsigned char *bitgdec64(unsigned char *in, unsigned n, uint64_t *out, uint64_t start) { if(!n) return in; uint64_t *op, pd = 0; bitdef(bw,br); #define FD64(i) { uint64_t dd = bitpeek(bw,br);\ if(dd & 1) bitrmv(bw,br, 1+0), dd = 0;\ else if(dd & 2) bitrmv(bw,br,N2+2), dd = _bzhi_u64(dd>>2, N2);\ else if(dd & 4) bitrmv(bw,br,N3+3), dd = _bzhi_u64(dd>>3, N3);\ else if(dd & 8) bitrmv(bw,br,N4+4), dd = _bzhi_u64(dd>>4, N4);\ else { unsigned _b; bitget(bw,br,4+3,_b); bitget64(bw,br,((_b>>4)+1)*8,dd,in); }\ pd += zigzagdec64(dd); op[i] = (start += pd); bitdnorm(bw,br,in);\ } for(bitdnorm(bw,br,in),op = out; op != out+(n&~(4-1)); op+=4) { FD64(0); FD64(1); FD64(2); FD64(3); __builtin_prefetch(in+512, 0); } for(; op != out+n; op++) FD64(0); return bitalign(bw,br,in); }