Optimize the consumer assignment of Kafka routine load job (#870)

1. Use a data consumer group to share a single stream load pipe with multi data consumers. This will increase the consuming speed of Kafka messages, as well as reducing the task number of routine
load job. 

Test results:

* 1 consumer, 1 partitions:
    consume time: 4.469s, rows: 990140, bytes: 128737139.  221557 rows/s, 28M/s
* 1 consumer, 3 partitions:
    consume time: 12.765s, rows: 2000143, bytes: 258631271. 156689 rows/s, 20M/s
    blocking get time(us): 12268241, blocking put time(us): 1886431
* 3 consumers, 3 partitions:
    consume time(all 3): 6.095s, rows: 2000503, bytes: 258631576. 328220 rows/s, 42M/s
    blocking get time(us): 1041639, blocking put time(us): 10356581

The next 2 cases show that we can achieve higher speed by adding more consumers. But the bottle neck transfers from Kafka consumer to Doris ingestion, so 3 consumers in a group is enough.

I also add a Backend config `max_consumer_num_per_group` to change the number of consumers in a data consumer group, and default value is 3.

In my test(1 Backend, 2 tablets, 1 replicas), 1 routine load task can achieve 10M/s, which is same as raw stream load.

2. Add OFFSET_BEGINNING and OFFSET_END support for Kafka routine load
This commit is contained in:
Mingyu Chen
2019-04-04 13:12:21 +08:00
committed by ZHAO Chun
parent 22500b672c
commit 400d8a906f
28 changed files with 651 additions and 248 deletions

View File

@ -23,8 +23,6 @@
#include <vector>
#include "common/status.h"
#include "runtime/stream_load/stream_load_pipe.h"
#include "runtime/routine_load/kafka_consumer_pipe.h"
#include "service/backend_options.h"
#include "util/defer_op.h"
#include "util/stopwatch.hpp"
@ -92,20 +90,24 @@ Status KafkaDataConsumer::init(StreamLoadContext* ctx) {
return Status::OK;
}
Status KafkaDataConsumer::assign_topic_partitions(StreamLoadContext* ctx) {
Status KafkaDataConsumer::assign_topic_partitions(
const std::map<int32_t, int64_t>& begin_partition_offset,
const std::string& topic,
StreamLoadContext* ctx) {
DCHECK(_k_consumer);
// create TopicPartitions
std::stringstream ss;
std::vector<RdKafka::TopicPartition*> topic_partitions;
for (auto& entry : ctx->kafka_info->begin_offset) {
for (auto& entry : begin_partition_offset) {
RdKafka::TopicPartition* tp1 = RdKafka::TopicPartition::create(
ctx->kafka_info->topic, entry.first, entry.second);
topic, entry.first, entry.second);
topic_partitions.push_back(tp1);
ss << "partition[" << entry.first << "-" << entry.second << "] ";
ss << "[" << entry.first << ": " << entry.second << "] ";
}
VLOG(1) << "assign topic partitions: " << ctx->kafka_info->topic
<< ", " << ss.str();
LOG(INFO) << "consumer: " << _id << ", grp: " << _grp_id
<< " assign topic partitions: " << topic << ", " << ss.str();
// delete TopicPartition finally
auto tp_deleter = [&topic_partitions] () {
@ -125,116 +127,65 @@ Status KafkaDataConsumer::assign_topic_partitions(StreamLoadContext* ctx) {
return Status::OK;
}
Status KafkaDataConsumer::start(StreamLoadContext* ctx) {
{
std::unique_lock<std::mutex> l(_lock);
if (!_init) {
return Status("consumer is not initialized");
}
}
Status KafkaDataConsumer::group_consume(
BlockingQueue<RdKafka::Message*>* queue,
int64_t max_running_time_ms) {
_last_visit_time = time(nullptr);
int64_t left_time = max_running_time_ms;
LOG(INFO) << "start kafka consumer: " << _id << ", grp: " << _grp_id
<< ", max running time(ms): " << left_time;
int64_t left_time = ctx->max_interval_s * 1000;
int64_t left_rows = ctx->max_batch_rows;
int64_t left_bytes = ctx->max_batch_size;
std::shared_ptr<KafkaConsumerPipe> kakfa_pipe = std::static_pointer_cast<KafkaConsumerPipe>(ctx->body_sink);
LOG(INFO) << "start consumer"
<< ". max time(ms): " << left_time
<< ", batch rows: " << left_rows
<< ", batch size: " << left_bytes
<< ". " << ctx->brief();
// copy one
std::map<int32_t, int64_t> cmt_offset = ctx->kafka_info->cmt_offset;
int64_t received_rows = 0;
Status st = Status::OK;
MonotonicStopWatch consumer_watch;
MonotonicStopWatch watch;
watch.start();
Status st;
while (true) {
std::unique_lock<std::mutex> l(_lock);
if (_cancelled) {
kakfa_pipe ->cancel();
return Status::CANCELLED;
{
std::unique_lock<std::mutex> l(_lock);
if (_cancelled) { break; }
}
if (_finished) {
kakfa_pipe ->finish();
ctx->kafka_info->cmt_offset = std::move(cmt_offset);
return Status::OK;
}
if (left_time <= 0 || left_rows <= 0 || left_bytes <=0) {
LOG(INFO) << "kafka consume batch done"
<< ". consume time(ms)=" << ctx->max_interval_s * 1000 - left_time
<< ", received rows=" << ctx->max_batch_rows - left_rows
<< ", received bytes=" << ctx->max_batch_size - left_bytes
<< ", kafka consume time(ms)=" << consumer_watch.elapsed_time() / 1000 / 1000;
if (left_bytes == ctx->max_batch_size) {
// nothing to be consumed, cancel it
// we do not allow finishing stream load pipe without data
kakfa_pipe->cancel();
_cancelled = true;
return Status::CANCELLED;
} else {
DCHECK(left_bytes < ctx->max_batch_size);
DCHECK(left_rows < ctx->max_batch_rows);
kakfa_pipe->finish();
ctx->kafka_info->cmt_offset = std::move(cmt_offset);
ctx->receive_bytes = ctx->max_batch_size - left_bytes;
_finished = true;
return Status::OK;
}
}
if (left_time <= 0) { break; }
bool done = false;
// consume 1 message at a time
consumer_watch.start();
RdKafka::Message *msg = _k_consumer->consume(1000 /* timeout, ms */);
consumer_watch.stop();
switch (msg->err()) {
case RdKafka::ERR_NO_ERROR:
VLOG(3) << "get kafka message"
<< ", partition: " << msg->partition()
<< ", offset: " << msg->offset()
<< ", len: " << msg->len();
st = kakfa_pipe ->append_with_line_delimiter(
static_cast<const char *>(msg->payload()),
static_cast<size_t>(msg->len()));
if (st.ok()) {
left_rows--;
left_bytes -= msg->len();
cmt_offset[msg->partition()] = msg->offset();
VLOG(3) << "consume partition[" << msg->partition()
<< " - " << msg->offset() << "]";
if (!queue->blocking_put(msg)) {
// queue is shutdown
done = true;
}
++received_rows;
break;
case RdKafka::ERR__TIMED_OUT:
// leave the status as OK, because this may happend
// if there is no data in kafka.
LOG(WARNING) << "kafka consume timeout";
LOG(WARNING) << "kafka consume timeout: " << _id;
break;
default:
LOG(WARNING) << "kafka consume failed: " << msg->errstr();
LOG(WARNING) << "kafka consume failed: " << _id
<< ", msg: " << msg->errstr();
done = true;
st = Status(msg->errstr());
break;
}
delete msg;
if (!st.ok()) {
kakfa_pipe ->cancel();
return st;
}
left_time = ctx->max_interval_s * 1000 - watch.elapsed_time() / 1000 / 1000;
left_time = max_running_time_ms - watch.elapsed_time() / 1000 / 1000;
if (done) { break; }
}
return Status::OK;
LOG(INFO) << "kafka conumer done: " << _id << ", grp: " << _grp_id
<< ". cancelled: " << _cancelled
<< ", left time(ms): " << left_time
<< ", total cost(ms): " << watch.elapsed_time() / 1000 / 1000
<< ", consume cost(ms): " << consumer_watch.elapsed_time() / 1000 / 1000
<< ", received rows: " << received_rows;
return st;
}
Status KafkaDataConsumer::cancel(StreamLoadContext* ctx) {
@ -243,17 +194,13 @@ Status KafkaDataConsumer::cancel(StreamLoadContext* ctx) {
return Status("consumer is not initialized");
}
if (_finished) {
return Status("consumer is already finished");
}
_cancelled = true;
LOG(INFO) << "kafka consumer cancelled. " << _id;
return Status::OK;
}
Status KafkaDataConsumer::reset() {
std::unique_lock<std::mutex> l(_lock);
_finished = false;
_cancelled = false;
return Status::OK;
}