From 7369261f33c261f52ba6ef384a2dd27f83bc7897 Mon Sep 17 00:00:00 2001 From: tarepanda1024 Date: Wed, 1 Mar 2023 07:37:27 +0800 Subject: [PATCH] [typo](docs)update hight-concurrent-point-query.md (#17248) Co-authored-by: liuxiaodong --- docs/en/docs/advanced/hight-concurrent-point-query.md | 2 +- docs/zh-CN/docs/advanced/hight-concurrent-point-query.md | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/en/docs/advanced/hight-concurrent-point-query.md b/docs/en/docs/advanced/hight-concurrent-point-query.md index c54436f5d3..625de51ba3 100644 --- a/docs/en/docs/advanced/hight-concurrent-point-query.md +++ b/docs/en/docs/advanced/hight-concurrent-point-query.md @@ -72,7 +72,7 @@ In order to reduce CPU cost for parsing query SQL and SQL expressions, we provid 1. Setup JDBC url and enable server side prepared statement ``` url = jdbc:mysql://127.0.0.1:9030/ycsb?useServerPrepStmts=true -`` +``` 2. Using `PreparedStatement` ```java diff --git a/docs/zh-CN/docs/advanced/hight-concurrent-point-query.md b/docs/zh-CN/docs/advanced/hight-concurrent-point-query.md index 94e804e425..10ba611df7 100644 --- a/docs/zh-CN/docs/advanced/hight-concurrent-point-query.md +++ b/docs/zh-CN/docs/advanced/hight-concurrent-point-query.md @@ -33,7 +33,7 @@ under the License. Doris 基于列存格式引擎构建,在高并发服务场景中,用户总是希望从系统中获取整行数据。但是,当表宽时,列存格式将大大放大随机读取 IO。Doris 查询引擎和计划对于某些简单的查询(如点查询)来说太重了。需要一个在FE的查询规划中规划短路径来处理这样的查询。FE 是 SQL 查询的访问层服务,使用 Java 编写,分析和解析 SQL 也会导致高并发查询的高 CPU 开销。为了解决上诉问题,我们在Doris中引入了行存、短查询路径、PreparedStatment来解决上诉问题, 下面是开启这些优化的指南。 ## 行存 -用户可以在Olap表中开启行存模式,但是需要额外的空建来存储行存。目前的行存实现是将行存编码后存在单独的一列中,这样做是用于简化行存的实现。行存模式默认是关闭的,如果您想开启则可以在建表语句的property中指定如下属性 +用户可以在Olap表中开启行存模式,但是需要额外的空间来存储行存。目前的行存实现是将行存编码后存在单独的一列中,这样做是用于简化行存的实现。行存模式默认是关闭的,如果您想开启则可以在建表语句的property中指定如下属性 ``` "store_row_column" = "true" ``` @@ -71,7 +71,7 @@ PROPERTIES ( 1. 设置JDB url并在server端开启prepared statement ``` url = jdbc:mysql://127.0.0.1:9030/ycsb?useServerPrepStmts=true -`` +``` 2. 使用 `PreparedStatement` ```java