Current initialization dependency:
Daemon ───┬──► StorageEngine ──► ExecEnv ──► Disk/Mem/CpuInfo
│
│
BackendService ─┘
However, original code incorrectly initialize Daemon before StorageEngine.
This PR also stop and join threads of daemon services in their dtor, to ensure Daemon services release resources in reverse order of initialization via RAII.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Arena can replace MemPool in most scenarios. Except for memory reuse, MemPool supports reuse of previous memory chunks after clear, but Arena does not.
Some comparisons between MemPool and Arena:
1. Expansion
Arena is less than 128M index 2 alloc chunk; more than 128M memory, allocate 128M * n > `size`, n is equal to the minimum value that satisfies the expression;
MemPool less than 512K index 2 alloc chunk, greater than 512K memory, separately apply for a `size` length chunk
After Arena applied for a chunk larger than 128M last time, the minimum chunk applied for after that is 128M. Does this seem to be a waste of memory? MemPool is also similar. After the chunk of 512K was applied for last time, the minimum chunk of subsequent applications is 512K.
2. Alignment
MemPool defaults to 16 alignment, because memtable and other places that use int128 require 16 alignment;
Arena has no default alignment;
3. Memory reuse
Arena only supports `rollback`, which reuses the memory of the current chunk, usually the memory requested last time.
MemPool supports clear(), all chunks can be reused; or call ReturnPartialAllocation() to roll back the last requested memory; if the last chunk has no memory, search for the most free chunk for allocation
4. Realloc
Arena supports realloc contiguous memory; it also supports realloc contiguous memory from any position at the time of the last allocation. The difference between `alloc_continue` and `realloc` is:
1. Alloc_continue does not need to specify the old size, but the default old size = head->pos - range_start
2. alloc_continue supports expansion from range_start when additional_bytes is between head and pos, which is equivalent to reusing a part of memory, while realloc completely allocates a new memory
MemPool does not support realloc, but supports transferring or absorbing chunks between two MemPools
5. check mem limit
MemPool checks the mem limit, and Arena checks at the Allocator layer.
6. Support for ASAN
Arena does something extra
7. Error handling
MemPool supports returning the error message of application failure directly through `Status`, and Arena throws Exception.
Tests that Arena can consider
1. After the last applied chunk is larger than 128M, the minimum applied chunk is 128M, which seems to waste memory;
2. Support clear, memory multiplexing;
3. Increase the large list, alloc the memory larger than 128M, and the size is equal to `size`, so as to avoid the current chunk not being fully used, which is wasteful.
4. In some cases, it may be possible to allocate backwards to find chunks t
Follow #17586.
This PR mainly changes:
Remove env/
Remove FileUtils/FilesystemUtils
Some methods are moved to LocalFileSystem
Remove olap/file_cache
Add s3 client cache for s3 file system
In my test, the time of open s3 file can be reduced significantly
Fix cold/hot separation bug for s3 fs.
This is the last PR of #17764.
After this, all IO operation should be in io/fs.
Except for tests in #17586, I also tested some case related to fs io:
clone
concurrency query on local/s3/hdfs
load error log create and clean
disk metrics
See #17764 for details
I have tested:
- Unit test for local/s3/hdfs/broker file system: be/test/io/fs/file_system_test.cpp
- Outfile to local/s3/hdfs/broker.
- Load from local/s3/hdfs/broker.
- Query file on local/s3/hdfs/broker file system, with table value function and catalog.
- Backup/Restore with local/s3/hdfs/broker file system
Not test:
- cold & host data separation case.
The element in InvertedIndexSearcherCache is inverted index searcher, which is a file descriptor of inverted index file, so InvertedIndexSearcherCache is actually cache file descriptor of inverted index file.
If open file descriptor limit of the Linux system is set too small and config inverted_index_searcher_cache_limit is too big, during high pressure load maybe cause "Too many open files".
So, when insert inverted index searcher into InvertedIndexSearcherCache, need also check whether reach file_descriptor_number limit for inverted index file.
Add cache for inverted index query match bitmap to accelerate common query keyword, especially for keyword matching many rows.
Tests result:
- large result: matching 99% out of 247 million rows shows 8x speed up.
- small result: matching 0.1% out of 247 million rows shows 2x speed up.
Since Filesystem inherited std::enable_shared_from_this , it is dangerous to create native point of FileSystem.
To avoid this behavior, making the constructor of XxxFileSystem a private method and using the static method create(...) to get a new FileSystem object.
The main purpose of this pr is to import `fileCache` for lakehouse reading remote files.
Use the local disk as the cache for reading remote file, so the next time this file is read,
the data can be obtained directly from the local disk.
In addition, this pr includes a few other minor changes
Import File Cache:
1. The imported `fileCache` is called `block_file_cache`, which uses lru replacement policy.
2. Implement a new FileRereader `CachedRemoteFilereader`, so that the logic of `file cache` is hidden under `CachedRemoteFilereader`.
Other changes:
1. Add a new interface `fs()` for `FileReader`.
2. `IOContext` adds some statistical information to count the situation of `FileCache`
Co-authored-by: Lightman <31928846+Lchangliang@users.noreply.github.com>
This PR implement the new bloom filter index: NGram bloom filter index, which was proposed in #10733.
The new index can improve the like query performance greatly, from our some test case , can get order of magnitude improve.
For how to use it you can check the docs in this PR, and the index based on the ```enable_function_pushdown```,
you need set it to ```true```, to make the index work for like query.
Refactor TaggableLogger
Refactor status handling in agent task:
Unify log format in TaskWorkerPool
Pass Status to the top caller, and replace some OLAPInternalError with more detailed error message Status
Premature return with the opposite condition to reduce indention
In our origin design, we calc delete bitmap in publish txn, and this operation
will cost too much time as it will load segment data and lookup row key in pre
rowset and segments.And publish version task should run in order, so it'll lead
to timeout in publish_txn.
In this pr, we seperate delete_bitmap calculation to tow part, one of it will be
done in flush mem table, so this work can run parallel. And we calc final
delete_bitmap in publish_txn, get a rowset_id set that should be included and
remove rowsets that has been compacted, the rowset difference between memtable_flush
and publish_txn is really small so publish_txn become very fast.In our test,
publish_txn cost about 10ms.
Co-authored-by: yixiutt <yixiu@selectdb.com>
* improvement for dynamic schema
not use schema as lru cache key any more.
load segment just use the rowset's original schema not the current read schema.
generate column reader and column iterator using the original schema, using the read schema if it is a new column.
using column unique id as key instead of column ordinals.
Co-authored-by: yiguolei <yiguolei@gmail.com>
* remove alpha_rowset_meta
* remove alpha rowset related codes in compaction
* remove alpha rowset related codes in RowsetMeta
* fix be ut because some ut use alpha rowsetmeta