1. change PipelineTaskState to enum class
2. remove some row-based code on FoldConstantExecutor::_get_result
3. reduce memcpy on minmax runtime filter function(Now we can guarantee that the input data is aligned)
4. add Wunused-template check, and remove some unused function, change some static function to inline function.
remove duplicate type definition in function context
remove unused method in function context
not need stale state in vexpr context because vexpr is stateless and function context saves state and they are cloned.
remove useless slot_size in all tuple or slot descriptor.
remove doris_udf namespace, it is useless.
remove some unused macro definitions.
init v_conjuncts in vscanner, not need write the same code in every scanner.
using unique ptr to manage function context since it could only belong to a single expr context.
Issue Number: close #xxx
---------
Co-authored-by: yiguolei <yiguolei@gmail.com>
bug: some chinese word not sort by pinyin in GBK coding
CREATE TABLE `test_convert` (
`a` varchar(100) NULL
) ENGINE=OLAP
DUPLICATE KEY(`a`)
DISTRIBUTED BY HASH(`a`) BUCKETS 3
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);
insert into test_convert values("b"), ("a"), ("c"), ("睿"), ("多"), ("丝");
Query OK, 6 rows affected (0.03 sec)
{'label':'insert_ca73a6acc2194d5b_888218a3949355a6', 'status':'VISIBLE', 'txnId':'18068'}
mysql [test]>select * from test_convert;
+------+
| a |
+------+
| a |
| c |
| 丝 |
| b |
| 多 |
| 睿 |
+------+
6 rows in set (0.01 sec)
mysql [test]>select * from test_convert order by convert(a using gbk);
+------+
| a |
+------+
| a |
| b |
| c |
| 多 |
| 丝 |
| 睿 |
+------+
6 rows in set (0.01 sec)
The logic of topn and full sort is wrong when there are both offsets and limits, the offset is not considered when doing the max heap optimization, which will lead to wrong result.
Issue Number: close#16351
Dynamic schema table is a special type of table, it's schema change with loading procedure.Now we implemented this feature mainly for semi-structure data such as JSON, since JSON is schema self-described we could extract schema info from the original documents and inference the final type infomation.This speical table could reduce manual schema change operation and easily import semi-structure data and extends it's schema automatically.
convert_nullable_flags does not contain nullable info for RowID column, but valid_column_ids contain RowID column, nullable falg will be undefined for RowID column
This PR optimize topn query like `SELECT * FROM tableX ORDER BY columnA ASC/DESC LIMIT N`.
TopN is is compose of SortNode and ScanNode, when user table is wide like 100+ columns the order by clause is just a few columns.But ScanNode need to scan all data from storage engine even if the limit is very small.This may lead to lots of read amplification.So In this PR I devide TopN query into two phase:
1. The first phase we just need to read `columnA`'s data from storage engine along with an extra RowId column called `__DORIS_ROWID_COL__`.The other columns are pruned from ScanNode.
2. The second phase I put it in the ExchangeNode beacuase it's the central node for topn nodes in the cluster.The ExchangeNode will spawn a RPC to other nodes using the RowIds(sorted and limited from SortNode) read from the first phase and read row by row from storage engine.
After the second phase read, Block will contain all the data needed for the query
If block bytes are bigger than the corresponding block's rows, then the avg_size_per_row would be zero. Which would end up diving zero in the following logic.
The main purpose of this pr is to import `fileCache` for lakehouse reading remote files.
Use the local disk as the cache for reading remote file, so the next time this file is read,
the data can be obtained directly from the local disk.
In addition, this pr includes a few other minor changes
Import File Cache:
1. The imported `fileCache` is called `block_file_cache`, which uses lru replacement policy.
2. Implement a new FileRereader `CachedRemoteFilereader`, so that the logic of `file cache` is hidden under `CachedRemoteFilereader`.
Other changes:
1. Add a new interface `fs()` for `FileReader`.
2. `IOContext` adds some statistical information to count the situation of `FileCache`
Co-authored-by: Lightman <31928846+Lchangliang@users.noreply.github.com>
boost::stacktrace::stacktrace() has memory leak, so use glog internal func to print stacktrace.
The reason for the memory leak of boost::stacktrace is that a state is saved in the thread local of each thread but not actively released. The test found that each thread leaked about 100M after calling boost::stacktrace.
refer to:
boostorg/stacktrace#118boostorg/stacktrace#111
mem tracker can be logically divided into 4 layers: 1)process 2)type 3)query/load/compation task etc. 4)exec node etc.
type includes
enum Type {
GLOBAL = 0, // Life cycle is the same as the process, e.g. Cache and default Orphan
QUERY = 1, // Count the memory consumption of all Query tasks.
LOAD = 2, // Count the memory consumption of all Load tasks.
COMPACTION = 3, // Count the memory consumption of all Base and Cumulative tasks.
SCHEMA_CHANGE = 4, // Count the memory consumption of all SchemaChange tasks.
CLONE = 5, // Count the memory consumption of all EngineCloneTask. Note: Memory that does not contain make/release snapshots.
BATCHLOAD = 6, // Count the memory consumption of all EngineBatchLoadTask.
CONSISTENCY = 7 // Count the memory consumption of all EngineChecksumTask.
}
Object pointers are no longer saved between each layer, and the values of process and each type are periodically aggregated.
other fix:
In [fix](memtracker) Fix transmit_tracker null pointer because phamp is not thread safe #13528, I tried to separate the memory that was manually abandoned in the query from the orphan mem tracker. But in the actual test, the accuracy of this part of the memory cannot be guaranteed, so put it back to the orphan mem tracker again.
# Proposed changes
This PR fixed lots of issues when building from source on macOS with Apple M1 chip.
## ATTENTION
The job for supporting macOS with Apple M1 chip is too big and there are lots of unresolved issues during runtime:
1. Some errors with memory tracker occur when BE (RELEASE) starts.
2. Some UT cases fail.
...
Temporarily, the following changes are made on macOS to start BE successfully.
1. Disable memory tracker.
2. Use tcmalloc instead of jemalloc.
This PR kicks off the job. Guys who are interested in this job can continue to fix these runtime issues.
## Use case
```shell
./build.sh -j 8 --be --clean
cd output/be/bin
ulimit -n 60000
./start_be.sh --daemon
```
## Something else
It takes around _**10+**_ minutes to build BE (with prebuilt third-parties) on macOS with M1 chip. We will improve the development experience on macOS greatly when we finish the adaptation job.