In previous, the counter in `profile` may be updated when close the file reader.
And the file reader may be closed when the object being deconstruted.
But at that time, the `profile` object may already be deleted, causing NPE and BE will crash.
This PR try to fix this issue:
1. Remove the "profile counter update" logic from all `close()` method.
2. Add a new interface `ProfileCollector`
It has 2 methods:
- `collect_profile_at_runtime()`
It can be called at runtime, eg, in every `get_next_block()` method.
So that the counter in profile can be updated at runtime.
- `collect_profile_before_close()`
Should be called before the object call `close()`. And it will only be called once.
3. Derived from `ProfileCollector`
All classes which may update the profile counter in `close()` method should extends
the `ProfileCollector`. Such as `GenericReader`, etc. And implement `collect_profile_before_close()`
And `collect_profile_before_close()` will be called in `scanner->mark_to_need_to_close()`.
If a failure occurs, doris may retry. Due to ctx->is_read_schema is a global variable that has not been reset in a timely manner, which may cause exceptions.
---------
Co-authored-by: yiguolei <676222867@qq.com>
Sometimes, the partitions of a hive table may on different storage, eg, some is on HDFS, others on object storage(cos, etc).
This PR mainly changes:
1. Fix the bug of accessing files via cosn.
2. Add a new field `fs_name` in TFileRangeDesc
This is because, when accessing a file, the BE will get a hdfs client from hdfs client cache, and different file in one query
request may have different fs name, eg, some of are `hdfs://`, some of are `cosn://`, so we need to specify fs name
for each file, otherwise, it may return error:
`reason: IllegalArgumentException: Wrong FS: cosn://doris-build-1308700295/xxxx, expected: hdfs://[172.xxxx:4007](http://172.xxxxx:4007/)`
## Proposed changes
Refactor thoughts: close#22383
Descriptions about `enclose` and `escape`: #22385
## Further comments
2023-08-09:
It's a pity that experiment shows that the original way for parsing plain CSV is faster. Therefor, the refactor is only applied on enclose related code. The plain CSV parser use the original logic.
Fallback of performance is unavoidable anyway. From the `CSV reader`'s perspective, the real weak point may be the write column behavior, proved by the flame graph.
Trimming escape will be enable after fix: #22411 is merged
Cases should be discussed:
1. When an incomplete enclose appears in the beginning of a large scale data, the line delimiter will be unreachable till the EOF, will the buffer become extremely large?
2. What if an infinite line occurs in the case? Essentially, `1.` is equivalent to this.
Only support stream load as trial in this PR, avoid too many unrelated changes. Docs will be added when `enclose` and `escape` is available for all kinds of load.
If a column is defined as: col VARCHAR/CHAR NULL and no default value. Then we load json data which misses column col, the result queried is not correct:
+------+
| col |
+------+
| 1 |
+------+
But expect:
+------+
| col |
+------+
| NULL |
+------+
---------
Co-authored-by: duanxujian <duanxujian@jd.com>
In some cases, it is necessary to unescape the original value, such as when converting a string to JSONB.
If not unescape, then later jsonb parse will be failed
### 1
In previous implementation, for each FileSplit, there will be a `TFileScanRange`, and each `TFileScanRange`
contains a list of `TFileRangeDesc` and a `TFileScanRangeParams`.
So if there are thousands of FileSplit, there will be thousands of `TFileScanRange`, which cause the thrift
data send to BE too large, resulting in:
1. the rpc of sending fragment may fail due to timeout
2. FE will OOM
For a certain query request, the `TFileScanRangeParams` is the common part and is same of all `TFileScanRange`.
So I move this to the `TExecPlanFragmentParams`.
After that, for each FileSplit, there is only a list of `TFileRangeDesc`.
In my test, to query a hive table with 100000 partitions, the size of thrift data reduced from 151MB to 15MB,
and the above 2 issues are gone.
### 2
Support when setting `max_external_file_meta_cache_num` <=0, the file meta cache for parquet footer will
not be used.
Because I found that for some wide table, the footer is too large(1MB after compact, and much more after
deserialized to thrift), it will consuming too much memory of BE when there are many files.
This will be optimized later, here I just support to disable this cache.
should set: enable_simdjson_reader=false in master as master enable_simdjson_reader=true by default.
Issue Number: close#21389
from rapidjson:
Query String
In addition to GetString(), the Value class also contains GetStringLength(). Here explains why:
According to RFC 4627, JSON strings can contain Unicode character U+0000, which must be escaped as "\u0000". The problem is that, C/C++ often uses null-terminated string, which treats \0 as the terminator symbol.
To conform with RFC 4627, RapidJSON supports string containing U+0000 character. If you need to handle this, you can use GetStringLength() to obtain the correct string length.
For example, after parsing the following JSON to Document d:
{ "s" : "a\u0000b" }
The correct length of the string "a\u0000b" is 3, as returned by GetStringLength(). But strlen() returns 1.
GetStringLength() can also improve performance, as user may often need to call strlen() for allocating buffer.
Besides, std::string also support a constructor:
string(const char* s, size_t count);
which accepts the length of string as parameter. This constructor supports storing null character within the string, and should also provide better performance.
Refactor the interface of create_file_reader
the file_size and mtime are merged into FileDescription, not in FileReaderOptions anymore.
Now the file handle cache can get correct file's modification time from FileDescription.
Add HdfsIO for hdfs file reader
pick from [Enhancement](multi-catalog) Add hdfs read statistics profile. #21442
* [Improve](dynamic schema) support filtering invalid data
1. Support dynamic schema to filter illegal data.
2. Expand the regular expression for ColumnName to support more column names.
3. Be compatible with PropertyAnalyzer and support legacy tables.
4. Default disable parse multi dimenssion array, since some bug unresolved
For routine load (kafka load), user can produce all data for different
table into single topic and doris will dispatch them into corresponding
table.
Signed-off-by: freemandealer <freeman.zhang1992@gmail.com>
1. make ColumnObject exception safe
2. introduce FlushContext and construct schema at memtable flush stage to make segment independent from dynamic schema
3. add more test cases
Get the last modification time from file status, and use the combination of path and modification time to generate cache identifier.
When a file is changed, the modification time will be changed, so the former cache path will be invalid.
Add file cache metrics and management.
1. Get file cache metrics
> If the performance of file cache is not efficient, there are currently no metrics to investigate the cause. In practice, hit ratio, disk usage, and segments removed status are very important information.
API: `http://be_host:be_webserver_port/metrics`
File cache metrics for each base path start with `doris_be_file_cache_` prefix. `hits_ratio` is the hit ratio of the cache since BE startup; `removed_elements` is the num of removed segment files since BE startup; Every cache path has three queues: index, normal and disposable. The capacity ratio of the three queues is 1:17:2.
```
doris_be_file_cache_hits_ratio{path="/mnt/datadisk1/gaoxin/file_cache"} 0.500000
doris_be_file_cache_hits_ratio{path="/mnt/datadisk1/gaoxin/small_file_cache"} 0.500000
doris_be_file_cache_removed_elements{path="/mnt/datadisk1/gaoxin/file_cache"} 0
doris_be_file_cache_removed_elements{path="/mnt/datadisk1/gaoxin/small_file_cache"} 0
doris_be_file_cache_normal_queue_max_size{path="/mnt/datadisk1/gaoxin/file_cache"} 912680550400
doris_be_file_cache_normal_queue_max_size{path="/mnt/datadisk1/gaoxin/small_file_cache"} 8500000000
doris_be_file_cache_normal_queue_max_elements{path="/mnt/datadisk1/gaoxin/file_cache"} 217600
doris_be_file_cache_normal_queue_max_elements{path="/mnt/datadisk1/gaoxin/small_file_cache"} 102400
doris_be_file_cache_normal_queue_curr_size{path="/mnt/datadisk1/gaoxin/file_cache"} 14129846
doris_be_file_cache_normal_queue_curr_size{path="/mnt/datadisk1/gaoxin/small_file_cache"} 14874904
doris_be_file_cache_normal_queue_curr_elements{path="/mnt/datadisk1/gaoxin/file_cache"} 18
doris_be_file_cache_normal_queue_curr_elements{path="/mnt/datadisk1/gaoxin/small_file_cache"} 22
...
```
2. Release file cache
> Frequent segment files swapping can seriously affect the performance of file cache. Adding a deletion interface helps users clean up the file cache.
API: `http://be_host:be_webserver_port/api/file_cache?op=release&base_path=${file_cache_base_path}`
Return the number of released segment files. If `base_path` is not provide in url, all cache paths will be released.
It's thread-safe to call this api, so only the segment files not been read currently can be released.
```
{"released_elements":22}
```
3. Specify the base path to store cache data
> Currently, regression testing lacks test cases of file cache, which cannot guarantee the stability of file cache. This interface is generally used in regression testing scenarios. Different queries use different paths to verify different usage cases and performance.
User can set session variable `file_cache_base_path` to specify the base path to store cache data. `file_cache_base_path="random"` as default, means chosing a random path from cached paths to store cache data. If `file_cache_base_path` is not one of the base paths in BE configuration, a random path is used.
Add `MergeRangeFileReader` to merge small IO to optimize parquet&orc read performance.
`MergeRangeFileReader` is a FileReader that efficiently supports random access in format like parquet and orc.
In order to merge small IO in parquet and orc, the random access ranges should be generated when creating the
reader. The random access ranges is a list of ranges that order by offset.
The range in random access ranges should be reading sequentially, can be skipped, but can't be read repeatedly.
When calling read_at, if the start offset located in random access ranges, the slice size should not span two ranges.
For example, in parquet, the random access ranges is the column offsets in a row group.
When reading at offset, if [offset, offset + 8MB) contains many random access ranges,
the reader will read data in [offset, offset + 8MB) as a whole, and copy the data in random access ranges into small
buffers(name as box, default 1MB, 64MB in total). A box can be occupied by many ranges,
and use a reference counter to record how many ranges are cached in the box. If reference counter equals zero,
the box can be release or reused by other ranges. When there is no empty box for a new read operation,
the read operation will do directly.
## Effects
The runtime of ClickBench reduces from 102s to 77s, and the runtime of Query 24 reduces from 24.74s to 9.45s.
The profile of Query 24:
```
VFILE_SCAN_NODE (id=0):(Active: 8s344ms, % non-child: 83.06%)
- FileReadBytes: 534.46 MB
- FileReadCalls: 1.031K (1031)
- FileReadTime: 28s801ms
- GetNextTime: 8s304ms
- MaxScannerThreadNum: 12
- MergedSmallIO: 0ns
- CopyTime: 157.774ms
- MergedBytes: 549.91 MB
- MergedIO: 94
- ReadTime: 28s642ms
- RequestBytes: 507.96 MB
- RequestIO: 1.001K (1001)
- NumScanners: 18
```
1001 request IOs has been merged into 94 IOs.
## Remaining problems
1. Add p2 regression test in nest PR
2. Profiles are scattered in various codes and will be refactored in the next PR
3. Support ORC reader
Fix decimal v3 precision loss issues in the multi-catalog module.
Now it will use decimal v3 to represent decimal type in the multi-catalog module.
Regression Test: `test_load_with_decimal.groovy`
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.