1. Refactor file cache. Before refactor, the file cache config format is "[{"path":"/path/to/file_cache","normal":21474836480,"persistent":10737418240,"query_limit":10737418240}]" and now change to "[{"path":"/mnt/disk3/selectdb_cloud/file_cache","total_size":21474836480,"query_limit":10737418240}]". It will be simpler than before.
2. Support more strategy. Support file cache priority. The file cache will have three queue, name as 'index'/'normal'/'disposable'. We can avoid that the higher priority data is eliminate by the lower priority data.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Arena can replace MemPool in most scenarios. Except for memory reuse, MemPool supports reuse of previous memory chunks after clear, but Arena does not.
Some comparisons between MemPool and Arena:
1. Expansion
Arena is less than 128M index 2 alloc chunk; more than 128M memory, allocate 128M * n > `size`, n is equal to the minimum value that satisfies the expression;
MemPool less than 512K index 2 alloc chunk, greater than 512K memory, separately apply for a `size` length chunk
After Arena applied for a chunk larger than 128M last time, the minimum chunk applied for after that is 128M. Does this seem to be a waste of memory? MemPool is also similar. After the chunk of 512K was applied for last time, the minimum chunk of subsequent applications is 512K.
2. Alignment
MemPool defaults to 16 alignment, because memtable and other places that use int128 require 16 alignment;
Arena has no default alignment;
3. Memory reuse
Arena only supports `rollback`, which reuses the memory of the current chunk, usually the memory requested last time.
MemPool supports clear(), all chunks can be reused; or call ReturnPartialAllocation() to roll back the last requested memory; if the last chunk has no memory, search for the most free chunk for allocation
4. Realloc
Arena supports realloc contiguous memory; it also supports realloc contiguous memory from any position at the time of the last allocation. The difference between `alloc_continue` and `realloc` is:
1. Alloc_continue does not need to specify the old size, but the default old size = head->pos - range_start
2. alloc_continue supports expansion from range_start when additional_bytes is between head and pos, which is equivalent to reusing a part of memory, while realloc completely allocates a new memory
MemPool does not support realloc, but supports transferring or absorbing chunks between two MemPools
5. check mem limit
MemPool checks the mem limit, and Arena checks at the Allocator layer.
6. Support for ASAN
Arena does something extra
7. Error handling
MemPool supports returning the error message of application failure directly through `Status`, and Arena throws Exception.
Tests that Arena can consider
1. After the last applied chunk is larger than 128M, the minimum applied chunk is 128M, which seems to waste memory;
2. Support clear, memory multiplexing;
3. Increase the large list, alloc the memory larger than 128M, and the size is equal to `size`, so as to avoid the current chunk not being fully used, which is wasteful.
4. In some cases, it may be possible to allocate backwards to find chunks t
Follow #17586.
This PR mainly changes:
Remove env/
Remove FileUtils/FilesystemUtils
Some methods are moved to LocalFileSystem
Remove olap/file_cache
Add s3 client cache for s3 file system
In my test, the time of open s3 file can be reduced significantly
Fix cold/hot separation bug for s3 fs.
This is the last PR of #17764.
After this, all IO operation should be in io/fs.
Except for tests in #17586, I also tested some case related to fs io:
clone
concurrency query on local/s3/hdfs
load error log create and clean
disk metrics
See #17764 for details
I have tested:
- Unit test for local/s3/hdfs/broker file system: be/test/io/fs/file_system_test.cpp
- Outfile to local/s3/hdfs/broker.
- Load from local/s3/hdfs/broker.
- Query file on local/s3/hdfs/broker file system, with table value function and catalog.
- Backup/Restore with local/s3/hdfs/broker file system
Not test:
- cold & host data separation case.
Save cached file segment into path like `cache_path / hash(filepath).substr(0, 3) / hash(filepath) / offset`
to prevent too many directories in `cache_path`.
Since Filesystem inherited std::enable_shared_from_this , it is dangerous to create native point of FileSystem.
To avoid this behavior, making the constructor of XxxFileSystem a private method and using the static method create(...) to get a new FileSystem object.
The main purpose of this pr is to import `fileCache` for lakehouse reading remote files.
Use the local disk as the cache for reading remote file, so the next time this file is read,
the data can be obtained directly from the local disk.
In addition, this pr includes a few other minor changes
Import File Cache:
1. The imported `fileCache` is called `block_file_cache`, which uses lru replacement policy.
2. Implement a new FileRereader `CachedRemoteFilereader`, so that the logic of `file cache` is hidden under `CachedRemoteFilereader`.
Other changes:
1. Add a new interface `fs()` for `FileReader`.
2. `IOContext` adds some statistical information to count the situation of `FileCache`
Co-authored-by: Lightman <31928846+Lchangliang@users.noreply.github.com>
Refactor the usage of file cache
### Motivation
There may be many kinds of file cache for different scenarios.
So the logic of the file cache should be hidden inside the file reader,
so that for the upper-layer caller, the change of the file cache does not need to
modify the upper-layer calling logic.
### Details
1. Add `FileReaderOptions` param for `fs->open_file()`, and in `FileReaderOptions`
1. `CachePathPolicy`
Determine the cache file path for a given file path.
We can implement different `CachePathPolicy` for different file cache.
2. `FileCacheType`
Specified file cache type: SUB_FILE_CACHE, WHOLE_FILE_CACHE, FILE_BLOCK_SIZE, etc.
2. Hide the cache logic inside the file reader.
The `RemoteFileSystem` will handle the `CacheOptions` and determine whether to
return a `CachedFileReader` or a `RemoteFileReader`.
And the file cache is managed by `CachedFileReader`