Arena can replace MemPool in most scenarios. Except for memory reuse, MemPool supports reuse of previous memory chunks after clear, but Arena does not.
Some comparisons between MemPool and Arena:
1. Expansion
Arena is less than 128M index 2 alloc chunk; more than 128M memory, allocate 128M * n > `size`, n is equal to the minimum value that satisfies the expression;
MemPool less than 512K index 2 alloc chunk, greater than 512K memory, separately apply for a `size` length chunk
After Arena applied for a chunk larger than 128M last time, the minimum chunk applied for after that is 128M. Does this seem to be a waste of memory? MemPool is also similar. After the chunk of 512K was applied for last time, the minimum chunk of subsequent applications is 512K.
2. Alignment
MemPool defaults to 16 alignment, because memtable and other places that use int128 require 16 alignment;
Arena has no default alignment;
3. Memory reuse
Arena only supports `rollback`, which reuses the memory of the current chunk, usually the memory requested last time.
MemPool supports clear(), all chunks can be reused; or call ReturnPartialAllocation() to roll back the last requested memory; if the last chunk has no memory, search for the most free chunk for allocation
4. Realloc
Arena supports realloc contiguous memory; it also supports realloc contiguous memory from any position at the time of the last allocation. The difference between `alloc_continue` and `realloc` is:
1. Alloc_continue does not need to specify the old size, but the default old size = head->pos - range_start
2. alloc_continue supports expansion from range_start when additional_bytes is between head and pos, which is equivalent to reusing a part of memory, while realloc completely allocates a new memory
MemPool does not support realloc, but supports transferring or absorbing chunks between two MemPools
5. check mem limit
MemPool checks the mem limit, and Arena checks at the Allocator layer.
6. Support for ASAN
Arena does something extra
7. Error handling
MemPool supports returning the error message of application failure directly through `Status`, and Arena throws Exception.
Tests that Arena can consider
1. After the last applied chunk is larger than 128M, the minimum applied chunk is 128M, which seems to waste memory;
2. Support clear, memory multiplexing;
3. Increase the large list, alloc the memory larger than 128M, and the size is equal to `size`, so as to avoid the current chunk not being fully used, which is wasteful.
4. In some cases, it may be possible to allocate backwards to find chunks t
Follow #17586.
This PR mainly changes:
Remove env/
Remove FileUtils/FilesystemUtils
Some methods are moved to LocalFileSystem
Remove olap/file_cache
Add s3 client cache for s3 file system
In my test, the time of open s3 file can be reduced significantly
Fix cold/hot separation bug for s3 fs.
This is the last PR of #17764.
After this, all IO operation should be in io/fs.
Except for tests in #17586, I also tested some case related to fs io:
clone
concurrency query on local/s3/hdfs
load error log create and clean
disk metrics
This patchset applies the following changes:
using vertical compaction machanism to do segcompaction
basic (WIP) refraction to separate segcompaction logic from BetaRowsetWriter
add segcompaction specific ut and regression tests
Currently, newly created segment could be chosen to be compaction
candidate, which is prone to bugs and segment file open failures. We
should skip last (maybe active) segment while doing segcompaction.
## Design
### Trigger
Every time when a rowset writer produces more than N (e.g. 10) segments, we trigger segment compaction. Note that only one segment compaction job for a single rowset at a time to ensure no recursing/queuing nightmare.
### Target Selection
We collect segments during every trigger. We skip big segments whose row num > M (e.g. 10000) coz we get little benefits from compacting them comparing our effort. Hence, we only pick the 'Longest Consecutive Small" segment group to do actual compaction.
### Compaction Process
A new thread pool is introduced to help do the job. We submit the above-mentioned 'Longest Consecutive Small" segment group to the pool. Then the worker thread does the followings:
- build a MergeIterator from the target segments
- create a new segment writer
- for each block readed from MergeIterator, the Writer append it
### SegID handling
SegID must remain consecutive after segment compaction.
If a rowset has small segments named seg_0, seg_1, seg_2, seg_3 and a big segment seg_4:
- we create a segment named "seg_0-3" to save compacted data for seg_0, seg_1, seg_2 and seg_3
- delete seg_0, seg_1, seg_2 and seg_3
- rename seg_0-3 to seg_0
- rename seg_4 to seg_1
It is worth noticing that we should wait inflight segment compaction tasks to finish before building rowset meta and committing this txn.