Test on SSB 100g:
select lo_suppkey, count(distinct lo_linenumber) from lineorder group by lo_suppkey;
exec time: 4.388s
create materialized view:
create materialized view customer_uv as select lo_suppkey, bitmap_union(to_bitmap(lo_linenumber)) from lineorder group by lo_suppkey;
select lo_suppkey, count(distinct lo_linenumber) from lineorder group by lo_suppkey;
exec time: 12.908s
test with the patch, exec time: 5.790s
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Arena can replace MemPool in most scenarios. Except for memory reuse, MemPool supports reuse of previous memory chunks after clear, but Arena does not.
Some comparisons between MemPool and Arena:
1. Expansion
Arena is less than 128M index 2 alloc chunk; more than 128M memory, allocate 128M * n > `size`, n is equal to the minimum value that satisfies the expression;
MemPool less than 512K index 2 alloc chunk, greater than 512K memory, separately apply for a `size` length chunk
After Arena applied for a chunk larger than 128M last time, the minimum chunk applied for after that is 128M. Does this seem to be a waste of memory? MemPool is also similar. After the chunk of 512K was applied for last time, the minimum chunk of subsequent applications is 512K.
2. Alignment
MemPool defaults to 16 alignment, because memtable and other places that use int128 require 16 alignment;
Arena has no default alignment;
3. Memory reuse
Arena only supports `rollback`, which reuses the memory of the current chunk, usually the memory requested last time.
MemPool supports clear(), all chunks can be reused; or call ReturnPartialAllocation() to roll back the last requested memory; if the last chunk has no memory, search for the most free chunk for allocation
4. Realloc
Arena supports realloc contiguous memory; it also supports realloc contiguous memory from any position at the time of the last allocation. The difference between `alloc_continue` and `realloc` is:
1. Alloc_continue does not need to specify the old size, but the default old size = head->pos - range_start
2. alloc_continue supports expansion from range_start when additional_bytes is between head and pos, which is equivalent to reusing a part of memory, while realloc completely allocates a new memory
MemPool does not support realloc, but supports transferring or absorbing chunks between two MemPools
5. check mem limit
MemPool checks the mem limit, and Arena checks at the Allocator layer.
6. Support for ASAN
Arena does something extra
7. Error handling
MemPool supports returning the error message of application failure directly through `Status`, and Arena throws Exception.
Tests that Arena can consider
1. After the last applied chunk is larger than 128M, the minimum applied chunk is 128M, which seems to waste memory;
2. Support clear, memory multiplexing;
3. Increase the large list, alloc the memory larger than 128M, and the size is equal to `size`, so as to avoid the current chunk not being fully used, which is wasteful.
4. In some cases, it may be possible to allocate backwards to find chunks t
Follow #17586.
This PR mainly changes:
Remove env/
Remove FileUtils/FilesystemUtils
Some methods are moved to LocalFileSystem
Remove olap/file_cache
Add s3 client cache for s3 file system
In my test, the time of open s3 file can be reduced significantly
Fix cold/hot separation bug for s3 fs.
This is the last PR of #17764.
After this, all IO operation should be in io/fs.
Except for tests in #17586, I also tested some case related to fs io:
clone
concurrency query on local/s3/hdfs
load error log create and clean
disk metrics
See #17764 for details
I have tested:
- Unit test for local/s3/hdfs/broker file system: be/test/io/fs/file_system_test.cpp
- Outfile to local/s3/hdfs/broker.
- Load from local/s3/hdfs/broker.
- Query file on local/s3/hdfs/broker file system, with table value function and catalog.
- Backup/Restore with local/s3/hdfs/broker file system
Not test:
- cold & host data separation case.
remove duplicate type definition in function context
remove unused method in function context
not need stale state in vexpr context because vexpr is stateless and function context saves state and they are cloned.
remove useless slot_size in all tuple or slot descriptor.
remove doris_udf namespace, it is useless.
remove some unused macro definitions.
init v_conjuncts in vscanner, not need write the same code in every scanner.
using unique ptr to manage function context since it could only belong to a single expr context.
Issue Number: close #xxx
---------
Co-authored-by: yiguolei <yiguolei@gmail.com>
Support IPV6 in Apache Doris, the main changes are:
1. enable binding to IPV6 address if network priority in config file contains an IPV6 CIDR string
2. BRPC and HTTP support binding to IPV6 address
3. BRPC and HTTP support visiting IPV6 Services
remove json functions code
remove string functions code
remove math functions code
move MatchPredicate to olap since it is only used in storage predicate process
remove some code in tuple, Tuple structure should be removed in the future.
remove many code in collection value structure, they are useless
#13195 left some unresolved issues. One of them is that some BE unit tests fail.
This PR fixes this issue. Now, we can run the command ./run-be-ut.sh --run successfully on macOS.
mem tracker can be logically divided into 4 layers: 1)process 2)type 3)query/load/compation task etc. 4)exec node etc.
type includes
enum Type {
GLOBAL = 0, // Life cycle is the same as the process, e.g. Cache and default Orphan
QUERY = 1, // Count the memory consumption of all Query tasks.
LOAD = 2, // Count the memory consumption of all Load tasks.
COMPACTION = 3, // Count the memory consumption of all Base and Cumulative tasks.
SCHEMA_CHANGE = 4, // Count the memory consumption of all SchemaChange tasks.
CLONE = 5, // Count the memory consumption of all EngineCloneTask. Note: Memory that does not contain make/release snapshots.
BATCHLOAD = 6, // Count the memory consumption of all EngineBatchLoadTask.
CONSISTENCY = 7 // Count the memory consumption of all EngineChecksumTask.
}
Object pointers are no longer saved between each layer, and the values of process and each type are periodically aggregated.
other fix:
In [fix](memtracker) Fix transmit_tracker null pointer because phamp is not thread safe #13528, I tried to separate the memory that was manually abandoned in the query from the orphan mem tracker. But in the actual test, the accuracy of this part of the memory cannot be guaranteed, so put it back to the orphan mem tracker again.
Reuse compression ctx and buffer.
Use a global instance for every compression algorithm, and use a
thread saft buffer pool to reuse compression buffer, pool size is equal
to max parallel thread num in compression, and this will not be too large.
Test shows this feature increase 5% of data import and compaction.
Co-authored-by: yixiutt <yixiu@selectdb.com>
* [fix](threadpool) threadpool schedules does not work right on concurrent token
Assuming there is a concurrent thread token whose concurrency is 2, and the 1st
submit on the token is submitted to threadpool while the 2nd is not submitted due
to busy. The token's active_threads is 1, then thread pool does not schedule the
token.
The patch fixes the problem.
Refactor TaggableLogger
Refactor status handling in agent task:
Unify log format in TaskWorkerPool
Pass Status to the top caller, and replace some OLAPInternalError with more detailed error message Status
Premature return with the opposite condition to reduce indention
1. add some metrics for cpu monitor;
2. add metrics for process state monitor;
3. add metrics for memory monitor;
It is convenient for us to use grafana to filter through different conditions.
After the added, we can find the cpu metrics like this:
doris_be_cpu{device="cpu1",mode="guest_nice"} 0
doris_be_cpu{device="cpu1",mode="guest"} 0
doris_be_cpu{device="cpu1",mode="steal"} 0
doris_be_cpu{device="cpu1",mode="soft_irq"} 107168
doris_be_cpu{device="cpu1",mode="irq"} 0
doris_be_cpu{device="cpu1",mode="iowait"} 3726931
doris_be_cpu{device="cpu1",mode="idle"} 2358039214
doris_be_cpu{device="cpu1",mode="system"} 58699464
doris_be_cpu{device="cpu1",mode="nice"} 1700438
doris_be_cpu{device="cpu1",mode="user"} 54974091
we can find the memory metrics as follow:
doris_be_memory_pswpin 167785
doris_be_memory_pswpout 203724
doris_be_memory_pgpgin 22308762092
doris_be_memory_pgpgout 152101956232
we also can find the process metrics as follow:
doris_be_proc{mode="interrupt"} 421721020416
doris_be_proc{mode="ctxt_switch"} 2806640907317
doris_be_proc{mode="procs_running"} 8
doris_be_proc{mode="procs_blocked"} 3
ZSTD compression is fast with high compression ratio. It can be used to archive higher compression ratio
than default Lz4f codec for storing cost sensitive data such as logs.
Compared to Lz4f codec, we see zstd codec get 35% compressed size off, 30% faster at first time read without OS page
cache, 40% slower at second time read with OS page cache in the following comparison test.
test data: 25GB text log, 110 million rows
test table: test_table(ts varchar(30), log string)
test SQL: set enable_vectorized_engine=1; select sum(length(log)) from test_table
be.conf: disable_storage_page_cache = true
set this config to disable doris page cache to avoid all data cached in memory for test real decompression speed.
test result
master branch with lz4f codec result:
- compressed size 4.3G
- SQL first exec time(read data from disk + decompress + little computation) : 18.3s
- SQL second exec time(read data from OS pagecache + decompress + little computation) : 2.4s
this branch with zstd codec (hardcode enable it) result:
- compressed size: 2.8G
- SQL first exec time: 12.8s
- SQL second exec time: 3.4s