Commit Graph

22 Commits

Author SHA1 Message Date
d286aa7bf7 [fix](spark-load) no need to filter row group when doing spark load (#13116)
1. Fix issue #13115 
2. Modify the method of `get_next_block` or `GenericReader`, to return "read_rows" explicitly.
    Some columns in block may not be filled in reader, if the first column is not filled, use `block->rows()` can not return real row numbers.
3. Add more checks for broker load test cases.
2022-10-05 23:00:56 +08:00
026ffaf10d [feature-wip](parquet-reader) add detail profile for parquet reader (#13095)
Add more detail profile for ParquetReader:
ParquetColumnReadTime: the total time of reading parquet columns
ParquetDecodeDictTime: time to parse dictionary page
ParquetDecodeHeaderTime: time to parse page header
ParquetDecodeLevelTime: time to parse page's definition/repetition level
ParquetDecodeValueTime: time to decode page data into doris column
ParquetDecompressCount: counter of decompressing page data
ParquetDecompressTime: time to decompress page data
ParquetParseMetaTime: time to parse parquet meta data
2022-10-02 15:11:48 +08:00
820ec435ce [feature-wip](parquet-reader) refactor parquet_predicate (#12896)
This change serves the  following purposes:
1.  use ScanPredicate instead of TCondition for external table, it can reuse old code branch.
2. simplify and delete some useless old code
3.  use ColumnValueRange to save predicate
2022-09-28 21:27:13 +08:00
d80b7b9689 [feature-wip](new-scan) support more load situation (#12953) 2022-09-27 21:48:32 +08:00
692176ec07 [feature-wip](parquet-reader) pre read page data in advance to avoid frequent seek (#12898)
1. Fix the bug of file position in `HdfsFileReader`
2. Reserve enough buffer for `ColumnColumnReader` to read large continuous memory
2022-09-25 21:21:06 +08:00
5bfdfac387 [feature-wip](parquet-reader) add parquet reader profile (#12797)
Add profile for parquet reader. New counters:
- ParquetFilteredGroups: Filtered row groups by `RowGroup` min-max statistics
- ParquetReadGroups: The number of row groups to read
- ParquetFilteredRowsByGroup: The number of filtered rows by `RowGroup` min-max statistics
- ParquetFilteredRowsByPage: The number of filtered rows by page min-max statistics
- ParquetFilteredBytes: The filtered bytes by `RowGroup` min-max statistics
- ParquetReadBytes: The total bytes in `ParquetReadGroups`, may be further filtered If a page is skipped as a whole
## Result
```
┌──────────────────────────────────────────────────────┐
│[0: VFILE_SCAN_NODE]                                  │
│(Active: 1s29ms, non-child: 96.42)                    │
│  - Counters:                                         │
│      - BytesRead: 0.00                               │
│      - FileReadCalls: 1.826K (1826)                  │
│      - FileReadTime: 510.627ms                       │
│      - FileRemoteReadBytes: 65.23 MB                 │
│      - FileRemoteReadCalls: 1.146K (1146)            │
│      - FileRemoteReadRate: 128.29331970214844 MB/sec │
│      - FileRemoteReadTime: 508.469ms                 │
│      - NumDiskAccess: 0                              │
│      - NumScanners: 1                                │
│      - ParquetFilteredBytes: 0.00                    │
│      - ParquetFilteredGroups: 0                      │
│      - ParquetFilteredRowsByGroup: 0                 │
│      - ParquetFilteredRowsByPage: 6.600003M (6600003)│
│      - ParquetReadBytes: 2.13 GB                     │
│      - ParquetReadGroups: 20                         │
│      - PeakMemoryUsage: 0.00                         │
│      - PredicateFilteredRows: 3.399797M (3399797)    │
│      - PredicateFilteredTime: 133.302ms              │
│      - RowsRead: 3.399997M (3399997)                 │
│      - RowsReturned: 200                             │
│      - RowsReturnedRate: 194                         │
│      - TotalRawReadTime(*): 726.566ms                │
│      - TotalReadThroughput: 0.0 /sec                 │
│      - WaitScannerTime: 1s27ms                       │
└──────────────────────────────────────────────────────┘
```
2022-09-23 18:42:14 +08:00
1ca6d559e4 [feature-wip](parquet-reader) refactor some arguments for parquet reader (#12771)
refactor some arguments for parquet reader 
1. Add new parquet context to wrap reader arguments
2. Reduced some arguments for function call
Co-authored-by: jinzhe <jinzhe@selectdb.com>
2022-09-22 09:34:01 +08:00
d435f0de41 [feature-wip](parquet-reader) add page index row range (#12652)
Add some utils and provide the candidate row range  (generated with skipped row range of each column) 
to read for page index filter
this version support binary operator filter

todo: 
- use context instead of structures in close() 
- process complex type filter
- use this instead of row group minmax filter
- refactor _eval_binary() for row group filter and page index filter
2022-09-20 10:36:19 +08:00
c5ad989065 [refactor](reader) refactor the interface of file reader (#12574)
Currently, Doris has a variety of readers for different file formats,
such as parquet reader, orc reader, csv reader, json reader and so on.

The interfaces of these readers are not unified, which makes it impossible to call them through a unified method.

In this PR, I added a `GenericReader` interface class, and other Readers will implement this interface class
to use the `get_next_block()` method.

This PR currently only modifies `arrow_reader` and `parquet reader`.
Other readers will be modified one by one in subsequent PRs.
2022-09-14 22:31:11 +08:00
1cc9eeeb1a [feature-wip](parquet-reader) read and generate array column (#12166)
Read and generate parquet array column.

When D=1, R=0, representing an empty array. Empty array is not a null value, so the NullMap for this row is false,
the offset for this row is [offset_start, offset_end) whose `offset_start == offset_end`,
and offset_end is the start offset of the next row, so there is no value in the nested primitive column.

When D=0, R=0, representing a null array, and the NullMap for this row is true.
2022-08-31 17:08:12 +08:00
dec576a991 [feature-wip](parquet-reader) generate null values and NullMap for parquet column (#12115)
Generate null values and NullMap for the nullable column by analyzing the definition levels.
2022-08-29 09:30:32 +08:00
0b5bb565a7 [feature-wip](parquet-reader) parquet dictionary decoder (#11981)
Parse parquet data with dictionary encoding.

Using the PLAIN_DICTIONARY enum value is deprecated in the Parquet 2.0 specification.
Prefer using RLE_DICTIONARY in a data page and PLAIN in a dictionary page for Parquet 2.0+ files.
refer: https://github.com/apache/parquet-format/blob/master/Encodings.md
2022-08-26 19:24:37 +08:00
0c16740f5c [feature-wip](parquet-reader) parquert scanner can read data (#11970)
Co-authored-by: jinzhe <jinzhe@selectdb.com>
2022-08-26 09:43:46 +08:00
6d925054de [feature-wip](parquet-reader) decode parquet time & datetime & decimal (#11845)
1. Spark can set the timestamp precision by the following configuration:
spark.sql.parquet.outputTimestampType = INT96(NANOS), TIMESTAMP_MICROS, TIMESTAMP_MILLIS
DATETIME V1 only keeps the second precision, DATETIME V2 keeps the microsecond precision.
2. If using DECIMAL V2, the BE saves the value as decimal128, and keeps the precision of decimal as (precision=27, scale=9). DECIMAL V3 can maintain the right precision of decimal
2022-08-22 10:15:35 +08:00
124b4f7694 [feature-wip](parquet-reader) row group reader ut finish (#11887)
Co-authored-by: jinzhe <jinzhe@selectdb.com>
2022-08-18 17:18:14 +08:00
f39f57636b [feature-wip](parquet-reader) update column read model and add page index (#11601) 2022-08-16 15:04:07 +08:00
0b9bfd15b7 [feature-wip](parquet-reader) parquet physical type to doris logical type (#11769)
Two improvements have been added:
1. Translate parquet physical type into doris logical type.
2. Decode parquet column chunk into doris ColumnPtr, and add unit tests to show how to use related API.
2022-08-15 16:08:11 +08:00
8f5aed27ec [feature-wip](parquet-reader)read and decode parquet physical type (#11637)
# Proposed changes

Read and decode parquet physical type.
1. The encoding type of boolean is bit-packing, this PR introduces the implementation of bit-packing from Impala
2. Create a parquet including all the primitive types supported by hive

## Remaining Problems
1. At present, only physical types are decoded, and there is no corresponding and conversion methods with doris logical.
2. No parsing and processing Decimal type / Timestamp / Date.
3. Int_8 / Int_16 is stored as Int_32. How to resolve these types.
2022-08-11 10:17:32 +08:00
37d1180cca [feature-wip](parquet-reader)decode parquet data (#11536) 2022-08-08 12:44:06 +08:00
e8a344b683 [feature-wip](parquet-reader) add predicate filter and column reader (#11488) 2022-08-08 10:21:24 +08:00
44a1a20e65 [feature-wip](parquet-reader)parse parquet schema (#11381)
Analyze schema elements in parquet FileMetaData, and generate the hierarchy of nested fields.
For exmpale:
1. primitive type
```
// thrift:
optional int32 <column-name>;
// sql definition:
<column-name> int32;
```
2. nested type
```
// thrift:
optional group <column-name> (LIST) {
  repeated group bag {
    optional group array_element (LIST) {
      repeated group bag {
        optional int32 array_element
      }
    }
  }
}
// sql definition:
<column-name> array<array<int32>>
```
2022-08-02 10:56:13 +08:00
e4bc3f6b6f [feature-wip] (parquet-reader) add parquet reader impl template (#11285) 2022-07-29 14:30:31 +08:00