Commit Graph

113 Commits

Author SHA1 Message Date
Pxl
5e4bb98900 [Chore](build) enable -Wpedantic and update lowest gcc version to 11.1 (#16290)
enable -Wpedantic and update lowest gcc version to 11.1
2023-02-03 11:28:48 +08:00
ca7eb94f23 [improvement](agg-function) Increase the limit maximum number of agg function parameters (#15924) 2023-01-31 21:03:50 +08:00
e49766483e [refactor](remove unused code) remove many xxxVal structure (#16143)
remove many xxxVal structure
remove BetaRowsetWriter::_add_row
remove anyval_util.cpp
remove non-vectorized geo functions
remove non-vectorized like predicate
Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-01-28 14:17:43 +08:00
615a5e7b51 [refactor](remove non vec code) remove non vec functions and AggregateInfo (#16138)
Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-01-25 12:53:05 +08:00
79ad74637d [refactor](remove expr) remove non vectorized Expr and ExprContext related codes (#16136) 2023-01-24 10:45:35 +08:00
199d7d3be8 [Refactor]Merged string_value into string_ref (#15925) 2023-01-22 16:39:23 +08:00
36590da24b [fix](regression p0) add the alias function hist to histogram and fix p0 (#15708)
add the alias function hist to histogram and fix p0
2023-01-08 11:31:23 +08:00
76ad599fd7 [enhancement](histogram) optimise aggregate function histogram (#15317)
This pr mainly to optimize the histogram(👉🏻 https://github.com/apache/doris/pull/14910)  aggregation function. Including the following:
1. Support input parameters `sample_rate` and `max_bucket_num`
2. Add UT and regression test
3. Add documentation
4. Optimize function implementation logic
 
Parameter description:
- `sample_rate`:Optional. The proportion of sample data used to generate the histogram. The default is 0.2.
- `max_bucket_num`:Optional. Limit the number of histogram buckets. The default value is 128.

---

Example:

```
MySQL [test]> SELECT histogram(c_float) FROM histogram_test;
+-------------------------------------------------------------------------------------------------------------------------------------+
| histogram(`c_float`)                                                                                                                |
+-------------------------------------------------------------------------------------------------------------------------------------+
| {"sample_rate":0.2,"max_bucket_num":128,"bucket_num":3,"buckets":[{"lower":"0.1","upper":"0.1","count":1,"pre_sum":0,"ndv":1},...]} |
+-------------------------------------------------------------------------------------------------------------------------------------+

MySQL [test]> SELECT histogram(c_string, 0.5, 2) FROM histogram_test;
+-------------------------------------------------------------------------------------------------------------------------------------+
| histogram(`c_string`)                                                                                                               |
+-------------------------------------------------------------------------------------------------------------------------------------+
| {"sample_rate":0.5,"max_bucket_num":2,"bucket_num":2,"buckets":[{"lower":"str1","upper":"str7","count":4,"pre_sum":0,"ndv":3},...]} |
+-------------------------------------------------------------------------------------------------------------------------------------+
```

Query result description:

```
{
    "sample_rate": 0.2, 
    "max_bucket_num": 128, 
    "bucket_num": 3, 
    "buckets": [
        {
            "lower": "0.1", 
            "upper": "0.2", 
            "count": 2, 
            "pre_sum": 0, 
            "ndv": 2
        }, 
        {
            "lower": "0.8", 
            "upper": "0.9", 
            "count": 2, 
            "pre_sum": 2, 
            "ndv": 2
        }, 
        {
            "lower": "1.0", 
            "upper": "1.0", 
            "count": 2, 
            "pre_sum": 4, 
            "ndv": 1
        }
    ]
}
```

Field description:
- sample_rate:Rate of sampling
- max_bucket_num:Limit the maximum number of buckets
- bucket_num:The actual number of buckets
- buckets:All buckets
    - lower:Upper bound of the bucket
    - upper:Lower bound of the bucket
    - count:The number of elements contained in the bucket
    - pre_sum:The total number of elements in the front bucket
    - ndv:The number of different values in the bucket

> Total number of histogram elements = number of elements in the last bucket(count) + total number of elements in the previous bucket(pre_sum).
2023-01-07 00:50:32 +08:00
b50448d5c4 [vectorized](udaf) fix udaf result is null when has multiple aggs (#15554) 2023-01-03 16:03:43 +08:00
fe562bc3e7 [Bug](Agg) fix crash when encountering not supported agg function like last_value(bitmap) (#15257)
The former logic inside aggregate_function_window.cpp would shutdown BE once encountering agg function with complex type like BITMAP. This pr makes it don't crash and would return one more concrete error message which tells the unsupported function signature to user.
2022-12-23 14:23:21 +08:00
754fceafaf [feature-wip](statistics) add aggregate function histogram and collect histogram statistics (#14910)
**Histogram statistics**

Currently doris collects statistics, but no histogram data, and by default the optimizer assumes that the different values of the columns are evenly distributed. This calculation can be problematic when the data distribution is skewed. So this pr implements the collection of histogram statistics.

For columns containing data skew columns (columns with unevenly distributed data in the column), histogram statistics enable the optimizer to generate more accurate estimates of cardinality for filtering or join predicates involving these columns, resulting in a more precise execution plan.

The optimization of the execution plan by histogram is mainly in two aspects: the selection of where condition and the selection of join order. The selection principle of the where condition is relatively simple: the histogram is used to calculate the selection rate of each predicate, and the filter with higher selection rate is preferred.

The selection of join order is based on the estimation of the number of rows in the join result. In the case of uneven data distribution in the join condition columns, histogram can greatly improve the accuracy of the prediction of the number of rows in the join result. At the same time, if the number of rows of a bucket in one of the columns is 0, you can mark it and directly skip the bucket in the subsequent join process to improve efficiency.

---

Histogram statistics are mainly collected by the histogram aggregation function, which is used as follows:

**Syntax**

```SQL
histogram(expr)
```

> The histogram function is used to describe the distribution of the data. It uses an "equal height" bucking strategy, and divides the data into buckets according to the value of the data. It describes each bucket with some simple data, such as the number of values that fall in the bucket. It is mainly used by the optimizer to estimate the range query.

**example**

```
MySQL [test]> select histogram(login_time) from dev_table;
+------------------------------------------------------------------------------------------------------------------------------+
| histogram(`login_time`)                                                                                                      |
+------------------------------------------------------------------------------------------------------------------------------+
| {"bucket_size":5,"buckets":[{"lower":"2022-09-21 17:30:29","upper":"2022-09-21 22:30:29","count":9,"pre_sum":0,"ndv":1},...]}|
+------------------------------------------------------------------------------------------------------------------------------+
```
**description**

```JSON
{
    "bucket_size": 5, 
    "buckets": [
        {
            "lower": "2022-09-21 17:30:29", 
            "upper": "2022-09-21 22:30:29", 
            "count": 9, 
            "pre_sum": 0, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-22 17:30:29", 
            "upper": "2022-09-22 22:30:29", 
            "count": 10, 
            "pre_sum": 9, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-23 17:30:29", 
            "upper": "2022-09-23 22:30:29", 
            "count": 9, 
            "pre_sum": 19, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-24 17:30:29", 
            "upper": "2022-09-24 22:30:29", 
            "count": 9, 
            "pre_sum": 28, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-25 17:30:29", 
            "upper": "2022-09-25 22:30:29", 
            "count": 9, 
            "pre_sum": 37, 
            "ndv": 1
        }
    ]
}
```

TODO:
- histogram func supports parameter and sample statistics (It's got another pr)
- use histogram statistics
- add  p0 regression
2022-12-22 16:42:17 +08:00
0b6054a4ce [Bug](decimalv3) Fix wrong argument for min_by/max_by (#15153) 2022-12-19 10:15:28 +08:00
Pxl
1b07e3e18b [Chore](refactor) some modify for pass c++20 standard (#15042)
some modify for pass c++20 standard
2022-12-17 14:41:07 +08:00
1f56279fd8 [Vectorized] Use SIMD to skip batches of null data in aggregation (#10392) 2022-12-12 23:40:31 +08:00
f3aea7f0f0 [Enhancement](status) Unify error code and enable customed err msg for BE internal errors (#14744) 2022-12-11 23:33:18 +08:00
ec2539e2a3 [chore](macOS) Resolve the issue with missing python program (#14864) 2022-12-07 15:30:12 +08:00
9dd1d989e8 [test](decimalv3) add regression test cases for decimalv3 (#14672) 2022-12-01 15:18:40 +08:00
3e8b3658c7 [feature-wip](decimalv3) Support basic agg and arithmetic operations for decimal v3 (#14513) 2022-11-29 15:12:41 +08:00
529bdfb153 [Fix](function) Fix retention function return wrong value type (#14552)
MySQL [db]> SELECT SUM(a.r[1]) as active_user_num, SUM(a.r[2]) as active_user_num_1day, SUM(a.r[3]) as active_user_num_3day, SUM(a.r[4]) as active_user_num_7day FROM ( SELECT user_id, retention( day = '2022-11-01', day = '2022-11-02', day = '2022-11-04', day = '2022-11-07') as r FROM login_event WHERE (day >= '2022-11-01') AND (day <= '2022-11-21') GROUP BY user_id ) a;
ERROR 1105 (HY000): errCode = 2, detailMessage = sum requires a numeric parameter: sum(%element_extract%(a.r, 1))
2022-11-28 15:56:18 +08:00
59b31a03c4 [Improvement](agg function) support group_bit_and/group_bit_or/group_bit_xor functions (#14386) 2022-11-24 16:46:42 +08:00
b04ec41c1d [Vectorized](udaf) fix java-udaf couldn't get jar core dump (#14393)
fix java-udaf couldn't get jar core dump
2022-11-22 20:49:02 +08:00
1ec7f45fb6 [Bug](avg) Fix avg for bigint (#14433) 2022-11-22 10:29:59 +08:00
2c42f0a905 [refactor](decimalv3) Refine code for DecimalV3 (#14394) 2022-11-19 16:57:17 +08:00
70cc725649 [Vectorized](function) support avg_weighted/percentile_array/topn_wei… (#14209)
* [Vectorized](function) support avg_weighted/percentile_array/topn_weighted functions

* update add to stringRef
2022-11-15 16:38:38 +08:00
6cc5ae077e [Improvement](Sequence function) Capitalize const variables (#14270) 2022-11-15 10:41:53 +08:00
035657c5a1 [typo](comment) Fix a lot of spell errors in be comments (#14208)
fix typos.
2022-11-12 16:06:15 +08:00
b6ba654f5b [Feature](Sequence) Support sequence_match and sequence_count functions (#13785) 2022-11-11 13:38:45 +08:00
12652ebb0e [UDF](java udf) using config to enable java udf instead of macro at compile time (#14062)
* [UDF](java udf) useing config to enable java udf instead of macro at compile time
2022-11-11 09:03:52 +08:00
df622d8b7d [Bug](udf) fix java-udaf process string type error and add some tests (#14106) 2022-11-10 09:30:57 +08:00
d183199319 [Bug](array-type) Fix array product calculate decimal type return wrong result (#13794) 2022-11-03 17:26:34 +08:00
fbc8b7311f [Opt](function) opt the function of ndv (#13887) 2022-11-02 22:21:20 +08:00
374303186c [Vectorized](function) support topn_array function (#13869) 2022-11-02 19:49:23 +08:00
287a739510 [javaudf](string) Fix string format in java udf (#13854) 2022-11-01 21:25:12 +08:00
Pxl
2fab0c45c7 [Feature](runtime-filter) add runtime filter breaking change adapt (#13246)
add runtime filter breaking change adapt
2022-10-28 10:59:28 +08:00
f329d33666 [chore](fix) Fix some spell errors in be's comments. #13452 2022-10-20 08:56:01 +08:00
125def5102 [enhancement](macOS M1) Support building from source on macOS (M1) (#13195)
# Proposed changes

This PR fixed lots of issues when building from source on macOS with Apple M1 chip.

## ATTENTION

The job for supporting macOS with Apple M1 chip is too big and there are lots of unresolved issues during runtime:
1. Some errors with memory tracker occur when BE (RELEASE) starts.
2. Some UT cases fail.
...

Temporarily, the following changes are made on macOS to start BE successfully.
1. Disable memory tracker.
2. Use tcmalloc instead of jemalloc.

This PR kicks off the job. Guys who are interested in this job can continue to fix these runtime issues.

## Use case

```shell
./build.sh -j 8 --be --clean

cd output/be/bin
ulimit -n 60000
./start_be.sh --daemon
```

## Something else

It takes around _**10+**_ minutes to build BE (with prebuilt third-parties) on macOS with M1 chip. We will improve the  development experience on macOS greatly when we finish the adaptation job.
2022-10-18 13:10:13 +08:00
207f4e559e [feature](agg) support group_bitmap_xor agg function. (#13287)
support `group_bitmap_xor` agg function
2022-10-17 18:40:06 +08:00
045bccdbea [Feature](Retention) support retention function (#13056) 2022-10-17 11:00:47 +08:00
f2fa9606c9 [fix](agg)count function should return 0 for null value (#13247)
count(null) should return 0 instead of 1, the streaming_agg_serialize_to_column function didn't handle if the input value is null, this pr fix it.
2022-10-15 10:40:52 +08:00
cb300b0b39 [feature](agg) support any,any_value agg functions. (#13228) 2022-10-13 18:31:19 +08:00
1ba9e4b568 [Improvement](sort) Reuse memory in sort node (#12921) 2022-09-28 09:44:35 +08:00
9d6c199553 [Bug](vec) Fix avg overflow in clickbench (#12621) 2022-09-16 14:43:40 +08:00
Pxl
0ead048b93 [Enhancement](column) remove ColumnString terminating zero and add a data_version for pblock (#12456)
1. remove ColumnString terminating zero
    2. add a data_version for pblock
    3. change EncryptionMode to enum class
2022-09-14 21:25:22 +08:00
af09c1f4eb [Improvement](window funnel) restrict timestamp to datetime type in window funnel (#12123) 2022-08-29 12:14:04 +08:00
Pxl
3af0745c8f [Bug](function) fix aggFnParams set not correct (#12006) 2022-08-26 14:29:56 +08:00
f875684345 [fix](agg) Crashing caused by serialization in streaming aggregation (#12027) 2022-08-24 14:38:25 +08:00
3abc4f357f [Bug](bitmap) intersect_count function use in string cause ASAN error (#11936) 2022-08-24 08:51:53 +08:00
c22d097b59 [improvement](compress) Support compress/decompress block with lz4 (#11955) 2022-08-22 17:35:43 +08:00
dc8f64b3e3 [improvement](agg) Serialize the fixed-length aggregation results with corresponding columns instead of ColumnString (#11801) 2022-08-22 10:12:06 +08:00
982c5f06b5 [fix](build) Resolve the conflicts when building be with java-udf (#11938) 2022-08-20 18:24:32 +08:00