remove json functions code
remove string functions code
remove math functions code
move MatchPredicate to olap since it is only used in storage predicate process
remove some code in tuple, Tuple structure should be removed in the future.
remove many code in collection value structure, they are useless
Support iceberg schema evolution for parquet file format.
Iceberg use unique id for each column to support schema evolution.
To support this feature in Doris, FE side need to get the current column id for each column and send the ids to be side.
Be read column id from parquet key_value_metadata, set the changed column name in Block to match the name in parquet file before reading data. And set the name back after reading data.
This PR optimize topn query like `SELECT * FROM tableX ORDER BY columnA ASC/DESC LIMIT N`.
TopN is is compose of SortNode and ScanNode, when user table is wide like 100+ columns the order by clause is just a few columns.But ScanNode need to scan all data from storage engine even if the limit is very small.This may lead to lots of read amplification.So In this PR I devide TopN query into two phase:
1. The first phase we just need to read `columnA`'s data from storage engine along with an extra RowId column called `__DORIS_ROWID_COL__`.The other columns are pruned from ScanNode.
2. The second phase I put it in the ExchangeNode beacuase it's the central node for topn nodes in the cluster.The ExchangeNode will spawn a RPC to other nodes using the RowIds(sorted and limited from SortNode) read from the first phase and read row by row from storage engine.
After the second phase read, Block will contain all the data needed for the query
The main purpose of this pr is to import `fileCache` for lakehouse reading remote files.
Use the local disk as the cache for reading remote file, so the next time this file is read,
the data can be obtained directly from the local disk.
In addition, this pr includes a few other minor changes
Import File Cache:
1. The imported `fileCache` is called `block_file_cache`, which uses lru replacement policy.
2. Implement a new FileRereader `CachedRemoteFilereader`, so that the logic of `file cache` is hidden under `CachedRemoteFilereader`.
Other changes:
1. Add a new interface `fs()` for `FileReader`.
2. `IOContext` adds some statistical information to count the situation of `FileCache`
Co-authored-by: Lightman <31928846+Lchangliang@users.noreply.github.com>
Read predicate columns firstly, and use VExprContext(push-down predicates)
to generate the select vector, which is then applied to read the non-predicate columns.
The data in non-predicate columns may be skipped by select vector, so the value-decode-time can be reduced.
If a whole page can be skipped, the decompress-time can also be reduced.
# Proposed changes
This PR fixed lots of issues when building from source on macOS with Apple M1 chip.
## ATTENTION
The job for supporting macOS with Apple M1 chip is too big and there are lots of unresolved issues during runtime:
1. Some errors with memory tracker occur when BE (RELEASE) starts.
2. Some UT cases fail.
...
Temporarily, the following changes are made on macOS to start BE successfully.
1. Disable memory tracker.
2. Use tcmalloc instead of jemalloc.
This PR kicks off the job. Guys who are interested in this job can continue to fix these runtime issues.
## Use case
```shell
./build.sh -j 8 --be --clean
cd output/be/bin
ulimit -n 60000
./start_be.sh --daemon
```
## Something else
It takes around _**10+**_ minutes to build BE (with prebuilt third-parties) on macOS with M1 chip. We will improve the development experience on macOS greatly when we finish the adaptation job.
Add `JSON` datatype, following features are implemented by this PR:
1. `CREATE` tables with `JSON` type columns
2. `INSERT` values containing `JSON` type value stored in `String`, which is represented as binary format(AKA `JSONB`) at BE
3. `SELECT` JSON columns
Detail design refers [DSIP-016: Support JSON type](https://cwiki.apache.org/confluence/display/DORIS/DSIP-016%3A+Support+JSON+type)
* add JSONB data storage format type
* fix JsonLiteral resolve bug
* add DataTypeJson case in data_type_factory
* add JSON syntax check in FE
* add operators for jsonb_document, currently not support comparison between any JSON type value
* add ColumnJson and DataTypeJson
* add JsonField to store JsonValue
* add JsonValue to convert String JSON to BINARY JSON and JsonLiteral case for vliteral
* add push_json for MysqlResultWriter
* JSON column need no zone_map_index
* Revert "JSON column need no zone_map_index"
This reverts commit f71d1ce1ded9dbae44a5d58abcec338816b70d79.
* add JSON writer and reader, ignore zone-map for JSON column
* add json_to_string for DataTypeJson
* add olap_data_convertor for JSON type
* add some enum
* add OLAP_FIELD_TYPE_JSON type, FieldTypeTraits for it and corresponding cases or functions
* fix column_json offsets overflow bug, format code
* remove useless TODOs, add CmpType cases for JSON type
* add license header
* format license
* format be codes
* resolve rebase master conflicts
* fix bugs for CREATE and meta related code
* refactor JsonValue constructors, add fe JSON cases and fix some bugs, reformat codes
* modification be codes along code review advice
* fix rebase conflicts with master
* add unit test for json_value and column_json
* fix rebase error
* rename json to jsonb
* fix some data convert bugs, set Mysql type to JSON
Reuse compression ctx and buffer.
Use a global instance for every compression algorithm, and use a
thread saft buffer pool to reuse compression buffer, pool size is equal
to max parallel thread num in compression, and this will not be too large.
Test shows this feature increase 5% of data import and compaction.
Co-authored-by: yixiutt <yixiu@selectdb.com>
In compute level, CHAR type will shrink suffix zeros.
To keep the logic the same as CHAR type, we also shrink for ARRAY or ARRAY<ARRAY> types.
Co-authored-by: cambyzju <zhuxiaoli01@baidu.com>