## Proposed changes
Refactor thoughts: close#22383
Descriptions about `enclose` and `escape`: #22385
## Further comments
2023-08-09:
It's a pity that experiment shows that the original way for parsing plain CSV is faster. Therefor, the refactor is only applied on enclose related code. The plain CSV parser use the original logic.
Fallback of performance is unavoidable anyway. From the `CSV reader`'s perspective, the real weak point may be the write column behavior, proved by the flame graph.
Trimming escape will be enable after fix: #22411 is merged
Cases should be discussed:
1. When an incomplete enclose appears in the beginning of a large scale data, the line delimiter will be unreachable till the EOF, will the buffer become extremely large?
2. What if an infinite line occurs in the case? Essentially, `1.` is equivalent to this.
Only support stream load as trial in this PR, avoid too many unrelated changes. Docs will be added when `enclose` and `escape` is available for all kinds of load.
Now we make wrong for decimal parse from string
if given string precision is bigger than defined decimal precision, we will return a overflow error, but only digit part is bigger than typed digit length , we should return overflow error when we traverse given string to decimal value
Fix some hive partition issues.
1. Fix be will crash when using hive partitions field of `date`, `timestamp`, `decimal` type.
2. Fix hdfs uri decode error when using `timestamp` partition filed which will cause some url-encoding for special chars, such as `%3A` will encode `:`.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Currently, there are some useless includes in the codebase. We can use a tool named include-what-you-use to optimize these includes. By using a strict include-what-you-use policy, we can get lots of benefits from it.
Arena can replace MemPool in most scenarios. Except for memory reuse, MemPool supports reuse of previous memory chunks after clear, but Arena does not.
Some comparisons between MemPool and Arena:
1. Expansion
Arena is less than 128M index 2 alloc chunk; more than 128M memory, allocate 128M * n > `size`, n is equal to the minimum value that satisfies the expression;
MemPool less than 512K index 2 alloc chunk, greater than 512K memory, separately apply for a `size` length chunk
After Arena applied for a chunk larger than 128M last time, the minimum chunk applied for after that is 128M. Does this seem to be a waste of memory? MemPool is also similar. After the chunk of 512K was applied for last time, the minimum chunk of subsequent applications is 512K.
2. Alignment
MemPool defaults to 16 alignment, because memtable and other places that use int128 require 16 alignment;
Arena has no default alignment;
3. Memory reuse
Arena only supports `rollback`, which reuses the memory of the current chunk, usually the memory requested last time.
MemPool supports clear(), all chunks can be reused; or call ReturnPartialAllocation() to roll back the last requested memory; if the last chunk has no memory, search for the most free chunk for allocation
4. Realloc
Arena supports realloc contiguous memory; it also supports realloc contiguous memory from any position at the time of the last allocation. The difference between `alloc_continue` and `realloc` is:
1. Alloc_continue does not need to specify the old size, but the default old size = head->pos - range_start
2. alloc_continue supports expansion from range_start when additional_bytes is between head and pos, which is equivalent to reusing a part of memory, while realloc completely allocates a new memory
MemPool does not support realloc, but supports transferring or absorbing chunks between two MemPools
5. check mem limit
MemPool checks the mem limit, and Arena checks at the Allocator layer.
6. Support for ASAN
Arena does something extra
7. Error handling
MemPool supports returning the error message of application failure directly through `Status`, and Arena throws Exception.
Tests that Arena can consider
1. After the last applied chunk is larger than 128M, the minimum applied chunk is 128M, which seems to waste memory;
2. Support clear, memory multiplexing;
3. Increase the large list, alloc the memory larger than 128M, and the size is equal to `size`, so as to avoid the current chunk not being fully used, which is wasteful.
4. In some cases, it may be possible to allocate backwards to find chunks t
PR https://github.com/apache/doris/pull/13917 has supported lazy read for non-predicate columns in ParquetReader,
but can't trigger lazy read when predicate columns are partition or missing columns.
This PR support such case, and fill partition and missing columns in `FileReader`.
# Proposed changes
Issue Number: close#6238
Co-authored-by: HappenLee <happenlee@hotmail.com>
Co-authored-by: stdpain <34912776+stdpain@users.noreply.github.com>
Co-authored-by: Zhengguo Yang <yangzhgg@gmail.com>
Co-authored-by: wangbo <506340561@qq.com>
Co-authored-by: emmymiao87 <522274284@qq.com>
Co-authored-by: Pxl <952130278@qq.com>
Co-authored-by: zhangstar333 <87313068+zhangstar333@users.noreply.github.com>
Co-authored-by: thinker <zchw100@qq.com>
Co-authored-by: Zeno Yang <1521564989@qq.com>
Co-authored-by: Wang Shuo <wangshuo128@gmail.com>
Co-authored-by: zhoubintao <35688959+zbtzbtzbt@users.noreply.github.com>
Co-authored-by: Gabriel <gabrielleebuaa@gmail.com>
Co-authored-by: xinghuayu007 <1450306854@qq.com>
Co-authored-by: weizuo93 <weizuo@apache.org>
Co-authored-by: yiguolei <guoleiyi@tencent.com>
Co-authored-by: anneji-dev <85534151+anneji-dev@users.noreply.github.com>
Co-authored-by: awakeljw <993007281@qq.com>
Co-authored-by: taberylyang <95272637+taberylyang@users.noreply.github.com>
Co-authored-by: Cui Kaifeng <48012748+azurenake@users.noreply.github.com>
## Problem Summary:
### 1. Some code from clickhouse
**ClickHouse is an excellent implementation of the vectorized execution engine database,
so here we have referenced and learned a lot from its excellent implementation in terms of
data structure and function implementation.
We are based on ClickHouse v19.16.2.2 and would like to thank the ClickHouse community and developers.**
The following comment has been added to the code from Clickhouse, eg:
// This file is copied from
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Interpreters/AggregationCommon.h
// and modified by Doris
### 2. Support exec node and query:
* vaggregation_node
* vanalytic_eval_node
* vassert_num_rows_node
* vblocking_join_node
* vcross_join_node
* vempty_set_node
* ves_http_scan_node
* vexcept_node
* vexchange_node
* vintersect_node
* vmysql_scan_node
* vodbc_scan_node
* volap_scan_node
* vrepeat_node
* vschema_scan_node
* vselect_node
* vset_operation_node
* vsort_node
* vunion_node
* vhash_join_node
You can run exec engine of SSB/TPCH and 70% TPCDS stand query test set.
### 3. Data Model
Vec Exec Engine Support **Dup/Agg/Unq** table, Support Block Reader Vectorized.
Segment Vec is working in process.
### 4. How to use
1. Set the environment variable `set enable_vectorized_engine = true; `(required)
2. Set the environment variable `set batch_size = 4096; ` (recommended)
### 5. Some diff from origin exec engine
https://github.com/doris-vectorized/doris-vectorized/issues/294
## Checklist(Required)
1. Does it affect the original behavior: (No)
2. Has unit tests been added: (Yes)
3. Has document been added or modified: (No)
4. Does it need to update dependencies: (No)
5. Are there any changes that cannot be rolled back: (Yes)
In our storage engine's code, we cast StringValue to Slice. Because
their memory layout is different, it may cause BE process crash.
We make their memory layout same in this patch to resolve this problem
temporary. We should improve it some day.