Commit Graph

208 Commits

Author SHA1 Message Date
a1db5c6f52 [fix](vec) crash caused by not-implemented function in ColumnFixedLengthObject (#17215) 2023-02-28 15:27:06 +08:00
7229751bd9 [Improve](map-type) Add contains_null for map (#16948)
Add contains_null for map type.
2023-02-23 20:47:26 +08:00
5ec8c51366 [fix](union iterator) fix bug that result data order of VUnionIterator is different (#16938)
Fix bug of #16680, data order of VUnionIterator outout block is changed, which will impact compaction.
2023-02-21 14:17:21 +08:00
f32cd2c123 [fix](statistics) fix a problem with histogram statistics collection parameters (#16918)
1. Fixed a problem with histogram statistics collection parameters.
2. Solved the problem that it takes a long time to collect histogram statistics.

TODO: Optimize histogram statistics sampling method and make the sampling parameters effective.

The problem is that the histogram function works as expected in the single-node test, but doesn't work in the multi-node test. In addition, the performance of the current support sampling to collect histogram is low, resulting in a large time consumption when collecting histogram information.

Fixed the parameter issue and temporarily removed support for sampling to speed up the collection of histogram statistics.

Will next support sampling to collect histogram information.
2023-02-20 16:33:18 +08:00
Pxl
2bc014d83a [Enchancement](function) remove unused params on aggregate function (#16886)
remove unused params on aggregate function
2023-02-20 11:08:45 +08:00
9b8c91e18c [improvement](rowset reader) fix possible memleak (#16680)
* [improvement](rowset reader) fix possible memleak

* fix be UT
2023-02-15 11:13:31 +08:00
1b3902baa2 [Feature](Complex-type) Add struct and map type to Doris (#16444)
This commit support:
1、Insert + select for struct/map type
2、Json stream load for struct type
3、m[key] function for map type

How to use:
Set the fe config to create table for struct and map type
1、admin set frontend config("enable_struct_type" = "true");
2、admin set frontend config("enable_map_type" = "true");

#16547

Co-authored-by: xy720 <xuyang25@baidu.com>
Co-authored-by: amory <wangqiannan@selectdb.com>
Co-authored-by: cambyzju <zhuxiaoli01@baidu.com>
Co-authored-by: hucheng01 <hucheng01@baidu.com>
2023-02-10 11:00:33 +08:00
4fcd6cd236 [refactor](remove unused code) remove load stream mgr (#16580)
remove old stream load pipe
remove old stream load manager

---------

Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-02-10 07:46:18 +08:00
d390e63a03 [enhancement](stream receiver) make stream receiver exception safe (#16412)
make stream receiver exception safe
change get_block(block**) to get_block(block* , bool* eos) unify stream semantic
2023-02-07 12:44:20 +08:00
Pxl
5e4bb98900 [Chore](build) enable -Wpedantic and update lowest gcc version to 11.1 (#16290)
enable -Wpedantic and update lowest gcc version to 11.1
2023-02-03 11:28:48 +08:00
00a598a839 [feature](cooldown) Decouple storage policy and resource (#15873) 2023-01-31 14:13:47 +08:00
90b12143a3 [refactor](remove unused code) remove runtime tuple structure and useless utils class (#16237) 2023-01-30 16:45:14 +08:00
69e748b076 [fix](schema scanner)change schema_scanner::get_next_row to get_next_block (#15718) 2023-01-30 10:01:50 +08:00
Pxl
46347a51d2 [Bug](exec) enable warning on ignoring function return value for vctx (#16157)
* enable warning on ignoring function return value for vctx
2023-01-29 17:23:21 +08:00
3235b636cc [refactor](remove unused code) remove thread pool manager (#16179)
* remove thread resource manager

* remove  string buffer
---------

Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-01-29 13:03:08 +08:00
79ad74637d [refactor](remove expr) remove non vectorized Expr and ExprContext related codes (#16136) 2023-01-24 10:45:35 +08:00
a3cd0ddbdc [refactor](remove broker scan node) it is not useful any more (#16128)
remove broker scannode
remove broker table
remove broker scanner
remove json scanner
remove orc scanner
remove hive external table
remove hudi external table
remove broker external table, user could use broker table value function instead
Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-01-23 19:37:38 +08:00
199d7d3be8 [Refactor]Merged string_value into string_ref (#15925) 2023-01-22 16:39:23 +08:00
116e17428b [Enhancement](point query optimize) improve performace of point query on primary keys (#15491)
1. support row format using codec of jsonb
2. short path optimize for point query
3. support prepared statement for point query
4. support mysql binary format
2023-01-20 13:33:01 +08:00
3ebc98228d [feature wip](multi catalog)Support iceberg schema evolution. (#15836)
Support iceberg schema evolution for parquet file format.
Iceberg use unique id for each column to support schema evolution.
To support this feature in Doris, FE side need to get the current column id for each column and send the ids to be side.
Be read column id from parquet key_value_metadata, set the changed column name in Block to match the name in parquet file before reading data. And set the name back after reading data.
2023-01-20 12:57:36 +08:00
d5a3e8df3a [Exec](opt) Opt the vexplode_split function performance (#15945) 2023-01-17 19:02:57 +08:00
d062ca2944 [refactor](vectorized) remove unnecessary vectorization check (#15984) 2023-01-17 12:21:46 +08:00
Pxl
b727033906 [Chore](build) enable -Wextra and remove some -Wno (#15760)
enable -Wextra and remove some -Wno
2023-01-15 10:40:35 +08:00
1489e3cfbf [Fix](file system) Make the constructor of XxxFileSystem a private method (#15889)
Since Filesystem inherited std::enable_shared_from_this , it is dangerous to create native point of FileSystem.
To avoid this behavior, making the constructor of XxxFileSystem a private method and using the static method create(...) to get a new FileSystem object.
2023-01-13 15:32:16 +08:00
0fbdf8e3e1 [Refactor](table function) Decouple vectorized table functions from non-vectorized ones (#15772) 2023-01-12 15:08:21 +08:00
d857b4af1b [refactor](remove row batch) remove impala rowbatch structure (#15767)
* [refactor](remove row batch) remove impala rowbatch structure

Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-01-11 09:37:35 +08:00
8f31a36429 [feature] support spill to disk for sort node (#15624) 2023-01-11 08:40:58 +08:00
f17d69e450 [feature](file cache)Import file cache for remote file reader (#15622)
The main purpose of this pr is to import `fileCache` for lakehouse reading remote files.
Use the local disk as the cache for reading remote file, so the next time this file is read,
the data can be obtained directly from the local disk.
In addition, this pr includes a few other minor changes

Import File Cache:
1. The imported `fileCache` is called `block_file_cache`, which uses lru replacement policy.
2. Implement a new FileRereader `CachedRemoteFilereader`, so that the logic of `file cache` is hidden under `CachedRemoteFilereader`.

Other changes:
1. Add a new interface `fs()` for `FileReader`.
2. `IOContext` adds some statistical information to count the situation of `FileCache`

Co-authored-by: Lightman <31928846+Lchangliang@users.noreply.github.com>
2023-01-10 12:23:56 +08:00
76ad599fd7 [enhancement](histogram) optimise aggregate function histogram (#15317)
This pr mainly to optimize the histogram(👉🏻 https://github.com/apache/doris/pull/14910)  aggregation function. Including the following:
1. Support input parameters `sample_rate` and `max_bucket_num`
2. Add UT and regression test
3. Add documentation
4. Optimize function implementation logic
 
Parameter description:
- `sample_rate`:Optional. The proportion of sample data used to generate the histogram. The default is 0.2.
- `max_bucket_num`:Optional. Limit the number of histogram buckets. The default value is 128.

---

Example:

```
MySQL [test]> SELECT histogram(c_float) FROM histogram_test;
+-------------------------------------------------------------------------------------------------------------------------------------+
| histogram(`c_float`)                                                                                                                |
+-------------------------------------------------------------------------------------------------------------------------------------+
| {"sample_rate":0.2,"max_bucket_num":128,"bucket_num":3,"buckets":[{"lower":"0.1","upper":"0.1","count":1,"pre_sum":0,"ndv":1},...]} |
+-------------------------------------------------------------------------------------------------------------------------------------+

MySQL [test]> SELECT histogram(c_string, 0.5, 2) FROM histogram_test;
+-------------------------------------------------------------------------------------------------------------------------------------+
| histogram(`c_string`)                                                                                                               |
+-------------------------------------------------------------------------------------------------------------------------------------+
| {"sample_rate":0.5,"max_bucket_num":2,"bucket_num":2,"buckets":[{"lower":"str1","upper":"str7","count":4,"pre_sum":0,"ndv":3},...]} |
+-------------------------------------------------------------------------------------------------------------------------------------+
```

Query result description:

```
{
    "sample_rate": 0.2, 
    "max_bucket_num": 128, 
    "bucket_num": 3, 
    "buckets": [
        {
            "lower": "0.1", 
            "upper": "0.2", 
            "count": 2, 
            "pre_sum": 0, 
            "ndv": 2
        }, 
        {
            "lower": "0.8", 
            "upper": "0.9", 
            "count": 2, 
            "pre_sum": 2, 
            "ndv": 2
        }, 
        {
            "lower": "1.0", 
            "upper": "1.0", 
            "count": 2, 
            "pre_sum": 4, 
            "ndv": 1
        }
    ]
}
```

Field description:
- sample_rate:Rate of sampling
- max_bucket_num:Limit the maximum number of buckets
- bucket_num:The actual number of buckets
- buckets:All buckets
    - lower:Upper bound of the bucket
    - upper:Lower bound of the bucket
    - count:The number of elements contained in the bucket
    - pre_sum:The total number of elements in the front bucket
    - ndv:The number of different values in the bucket

> Total number of histogram elements = number of elements in the last bucket(count) + total number of elements in the previous bucket(pre_sum).
2023-01-07 00:50:32 +08:00
f24659c003 [Refactor](pipeline) refactor the code of channel buffer limit and change the default value (#15650) 2023-01-06 14:52:43 +08:00
77fda4f749 [SpillToDisk](block reader and writer)Support spill to disk: implement interfaces for spill block and read block (#15399) 2023-01-03 12:42:45 +08:00
14eaf41029 [refactor](remove rowblockv2) remove rowblock v2 structure (#15540)
* [refactor](remove rowblockv2) remove rowblock v2 structure

* fix bugs

Co-authored-by: yiguolei <yiguolei@gmail.com>
2023-01-03 09:21:57 +08:00
ad68764977 [enhancement](tablet) Unify redundant create_rowset_writer methods (#15519)
* Remove redundant create_rowset_writer methods

* Set resource id when setting FS in rowset meta

* fix

* fix ut
2022-12-30 22:57:12 +08:00
edb9a3b58d [Bug](timediff) Fix wrong result for function timediff (#15312) 2022-12-30 00:28:51 +08:00
ec055e1acb [feature](new file reader) Integrate new file reader (#15175) 2022-12-26 08:55:52 +08:00
a807978882 [refactor](non-vec) Remove rowbatch code from delta writer and some rowbatch related code (#15349)
Co-authored-by: yiguolei <yiguolei@gmail.com>
2022-12-26 08:54:51 +08:00
e640f49b6d [refactor](non-vec) remove non vectorized predicate and row_block (#15348)
remove non vectorized predicate and row_block
2022-12-25 21:45:00 +08:00
5cefd05869 [fix](multi-catalog) fix and optimize iceberg v2 reader (#15274)
Fix three bugs when read iceberg v2 tables:
1. The `delete position` in `delete file` represents the position of delete row in the entire file, but the `read range` in 
`RowGroupReader` represents the position in current row group. Therefore, we need to subtract the position of first 
row of current row group from `delete position`.
2. When only reading the partition columns, `RowGroupReader` skips processing the `delete position`.
3. If the `delete position` has delete all rows in a row group, the `read range` is empty, but we read the whole row 
group in such case.

Optimize four performance issues:
1. We change `delete position` to `delete range`, and then merge `delete range` and `read range` into the final read 
ranges. This process is too tedious and time-consuming. . we can merge `delete position` and `read range` directly.
2. `delete position` is ordered in a `delete file`, so we can use merge-sort, instead of ordered-set.
3. Initialize `RowGroupReader` when reading, instead of initialize all row groups when opening a `ParquetReader`, to 
save memory usage, and the same as `IcebergReader`.
4. Change the recursive call of `_do_lazy_read` to loop logic.
2022-12-24 16:02:07 +08:00
df5969ab58 [Feature] Support function roundBankers (#15154) 2022-12-22 22:53:09 +08:00
77c15729d4 [fix](memory) Fix too many repeat cause OOM (#15217) 2022-12-22 17:16:18 +08:00
754fceafaf [feature-wip](statistics) add aggregate function histogram and collect histogram statistics (#14910)
**Histogram statistics**

Currently doris collects statistics, but no histogram data, and by default the optimizer assumes that the different values of the columns are evenly distributed. This calculation can be problematic when the data distribution is skewed. So this pr implements the collection of histogram statistics.

For columns containing data skew columns (columns with unevenly distributed data in the column), histogram statistics enable the optimizer to generate more accurate estimates of cardinality for filtering or join predicates involving these columns, resulting in a more precise execution plan.

The optimization of the execution plan by histogram is mainly in two aspects: the selection of where condition and the selection of join order. The selection principle of the where condition is relatively simple: the histogram is used to calculate the selection rate of each predicate, and the filter with higher selection rate is preferred.

The selection of join order is based on the estimation of the number of rows in the join result. In the case of uneven data distribution in the join condition columns, histogram can greatly improve the accuracy of the prediction of the number of rows in the join result. At the same time, if the number of rows of a bucket in one of the columns is 0, you can mark it and directly skip the bucket in the subsequent join process to improve efficiency.

---

Histogram statistics are mainly collected by the histogram aggregation function, which is used as follows:

**Syntax**

```SQL
histogram(expr)
```

> The histogram function is used to describe the distribution of the data. It uses an "equal height" bucking strategy, and divides the data into buckets according to the value of the data. It describes each bucket with some simple data, such as the number of values that fall in the bucket. It is mainly used by the optimizer to estimate the range query.

**example**

```
MySQL [test]> select histogram(login_time) from dev_table;
+------------------------------------------------------------------------------------------------------------------------------+
| histogram(`login_time`)                                                                                                      |
+------------------------------------------------------------------------------------------------------------------------------+
| {"bucket_size":5,"buckets":[{"lower":"2022-09-21 17:30:29","upper":"2022-09-21 22:30:29","count":9,"pre_sum":0,"ndv":1},...]}|
+------------------------------------------------------------------------------------------------------------------------------+
```
**description**

```JSON
{
    "bucket_size": 5, 
    "buckets": [
        {
            "lower": "2022-09-21 17:30:29", 
            "upper": "2022-09-21 22:30:29", 
            "count": 9, 
            "pre_sum": 0, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-22 17:30:29", 
            "upper": "2022-09-22 22:30:29", 
            "count": 10, 
            "pre_sum": 9, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-23 17:30:29", 
            "upper": "2022-09-23 22:30:29", 
            "count": 9, 
            "pre_sum": 19, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-24 17:30:29", 
            "upper": "2022-09-24 22:30:29", 
            "count": 9, 
            "pre_sum": 28, 
            "ndv": 1
        }, 
        {
            "lower": "2022-09-25 17:30:29", 
            "upper": "2022-09-25 22:30:29", 
            "count": 9, 
            "pre_sum": 37, 
            "ndv": 1
        }
    ]
}
```

TODO:
- histogram func supports parameter and sample statistics (It's got another pr)
- use histogram statistics
- add  p0 regression
2022-12-22 16:42:17 +08:00
e9a201e0ec [refactor](non-vec) delete some non-vec exec node (#15239)
* [refactor](non-vec) delete some non-vec exec node
2022-12-22 14:05:51 +08:00
821c12a456 [chore](BE) remove all useless segment group related code #15193
The segment group is useless in current codebase, remove all the related code inside Doris. As for the related protobuf code, use reserved flag to prevent any future user from using that field.
2022-12-20 17:11:47 +08:00
Pxl
219489ca0e [Bug](s2geo) avoid some core dump on s2geo && enable ut of s2geo #15068 2022-12-16 10:56:02 +08:00
f17b138cbd [BugFix](regression) don't use sf1DataPath when stream load (#15060)
don't use sf1DataPath when stream load
2022-12-14 12:39:56 +08:00
1200b22fd2 [function](round) compute accurate round value by decimal (#14946) 2022-12-13 09:53:43 +08:00
38570312dd [feature](split_by_string)support split by string function (#13741) 2022-12-12 15:22:30 +08:00
33349c3419 [feature](function)Support negative index for function split_part (#13914) 2022-12-12 09:56:09 +08:00
f3aea7f0f0 [Enhancement](status) Unify error code and enable customed err msg for BE internal errors (#14744) 2022-12-11 23:33:18 +08:00
e279c90965 [fix](ColumnVector) ColumnVector::insert_date_column crashed #14839
ColumnVector::insert_date_column make BE crashed with large data(>512 rows).


Co-authored-by: cambyzju <zhuxiaoli01@baidu.com>
2022-12-06 09:06:57 +08:00