Now we reuse buffer pool for broadcast shuffle on pipeline engine. This PR ensures that a pipeline with a broadcast shuffle sink will not be scheduled if there are no available buffer in the buffer pool
Currently, for broadcast shuffle, we serialize a block once and then send it by RPC through multiple channel. After this, we will serialize next block in the same memory for consideration of memory reuse. However, since the RPC is asynchronized, maybe the next block serialization will happen before sending the previous block.
So, in this PR, I use a ref count to identify if the serialized block can be reuse in broadcast shuffle.
mem tracker can be logically divided into 4 layers: 1)process 2)type 3)query/load/compation task etc. 4)exec node etc.
type includes
enum Type {
GLOBAL = 0, // Life cycle is the same as the process, e.g. Cache and default Orphan
QUERY = 1, // Count the memory consumption of all Query tasks.
LOAD = 2, // Count the memory consumption of all Load tasks.
COMPACTION = 3, // Count the memory consumption of all Base and Cumulative tasks.
SCHEMA_CHANGE = 4, // Count the memory consumption of all SchemaChange tasks.
CLONE = 5, // Count the memory consumption of all EngineCloneTask. Note: Memory that does not contain make/release snapshots.
BATCHLOAD = 6, // Count the memory consumption of all EngineBatchLoadTask.
CONSISTENCY = 7 // Count the memory consumption of all EngineChecksumTask.
}
Object pointers are no longer saved between each layer, and the values of process and each type are periodically aggregated.
other fix:
In [fix](memtracker) Fix transmit_tracker null pointer because phamp is not thread safe #13528, I tried to separate the memory that was manually abandoned in the query from the orphan mem tracker. But in the actual test, the accuracy of this part of the memory cannot be guaranteed, so put it back to the orphan mem tracker again.
Reuse compression ctx and buffer.
Use a global instance for every compression algorithm, and use a
thread saft buffer pool to reuse compression buffer, pool size is equal
to max parallel thread num in compression, and this will not be too large.
Test shows this feature increase 5% of data import and compaction.
Co-authored-by: yixiutt <yixiu@selectdb.com>
When the length of `Tuple/Block data` is greater than 2G, serialize the protoBuf request and embed the
`Tuple/Block data` into the controller attachment and transmit it through http brpc.
This is to avoid errors when the length of the protoBuf request exceeds 2G:
`Bad request, error_text=[E1003]Fail to compress request`.
In #7164, `Tuple/Block data` was put into attachment and sent via default `baidu_std brpc`,
but when the attachment exceeds 2G, it will be truncated. There is no 2G limit for sending via `http brpc`.
Also, in #7921, consider putting `Tuple/Block data` into attachment transport by default, as this theoretically
reduces one serialization and improves performance. However, the test found that the performance did not improve,
but the memory peak increased due to the addition of a memory copy.
Modify the implementation of MemTracker:
1. Simplify a lot of useless logic;
2. Added MemTrackerTaskPool, as the ancestor of all query and import trackers, This is used to track the local memory usage of all tasks executing;
3. Add cosume/release cache, trigger a cosume/release when the memory accumulation exceeds the parameter mem_tracker_consume_min_size_bytes;
4. Add a new memory leak detection mode (Experimental feature), throw an exception when the remaining statistical value is greater than the specified range when the MemTracker is destructed, and print the accurate statistical value in HTTP, the parameter memory_leak_detection
5. Added Virtual MemTracker, cosume/release will not sync to parent. It will be used when introducing TCMalloc Hook to record memory later, to record the specified memory independently;
6. Modify the GC logic, register the buffer cached in DiskIoMgr as a GC function, and add other GC functions later;
7. Change the global root node from Root MemTracker to Process MemTracker, and remove Process MemTracker in exec_env;
8. Modify the macro that detects whether the memory has reached the upper limit, modify the parameters and default behavior of creating MemTracker, modify the error message format in mem_limit_exceeded, extend and apply transfer_to, remove Metric in MemTracker, etc.;
Modify where MemTracker is used:
1. MemPool adds a constructor to create a temporary tracker to avoid a lot of redundant code;
2. Added trackers for global objects such as ChunkAllocator and StorageEngine;
3. Added more fine-grained trackers such as ExprContext;
4. RuntimeState removes FragmentMemTracker, that is, PlanFragmentExecutor mem_tracker, which was previously used for independent statistical scan process memory, and replaces it with _scanner_mem_tracker in OlapScanNode;
5. MemTracker is no longer recorded in ReservationTracker, and ReservationTracker will be removed later;
This PR mainly changes:
1. Change the define of PBlock
The new PBlock consists of a set of PColumnMeta and a binary buffer.
The PColumnMeta records the metadata information of all columns in the Block,
while the buffer stores the serialized binary data of all columns.
2. Refactor the serialize/deserialize method of data type
Rewrite the `serialize()/deserialize()` of IDataType. And also add
a new method `get_uncompressed_serialized_bytes()` to get the total length
of uncompressed serialized data of a column.
3. Rewrite the serialize/deserialize method of Block
Now, when serializing a Block to PBlock, it will first get the total length
of uncompressed serialized data of all columns in this Block, and then allocate
the memory to write the serialized data to the buffer.
4. Use brpc attachment to transmit the serialized column data
Support implement UDF through GRPC protocol. This brings several benefits:
1. The udf implementation language is not limited to c++, users can use any familiar language to implement udf
2. UDF is decoupled from Doris, udf will not cause doris coredump, udf computing resources are separated from doris, and doris services are not affected
But RPC's UDF has a fixed overhead, so its performance is much slower than C++ UDF, especially when the amount of data is large.
Create function like
```
CREATE FUNCTION rpc_add(INT, INT) RETURNS INT PROPERTIES (
"SYMBOL"="add_int",
"OBJECT_FILE"="127.0.0.1:9999",
"TYPE"="RPC"
);
```
Function service need to implement `check_fn` and `fn_call` methods
Note:
THIS IS AN EXPERIMENTAL FEATURE, THE INTERFACE AND DATA STRUCTURE MAY BE CHANGED IN FUTURE !!!
This PR mainly changes:
1. Help to Cancel the load job ASAP when encounter unqualified data.
Solution is described in #6318 .
Also replace some std::stringstream with fmt::memory_buffer to avoid performance issues.
2. fix a NPE bug when create user with empty host
3. fix compile warning after rebasing the master(vectorization)
# Proposed changes
Issue Number: close#6238
Co-authored-by: HappenLee <happenlee@hotmail.com>
Co-authored-by: stdpain <34912776+stdpain@users.noreply.github.com>
Co-authored-by: Zhengguo Yang <yangzhgg@gmail.com>
Co-authored-by: wangbo <506340561@qq.com>
Co-authored-by: emmymiao87 <522274284@qq.com>
Co-authored-by: Pxl <952130278@qq.com>
Co-authored-by: zhangstar333 <87313068+zhangstar333@users.noreply.github.com>
Co-authored-by: thinker <zchw100@qq.com>
Co-authored-by: Zeno Yang <1521564989@qq.com>
Co-authored-by: Wang Shuo <wangshuo128@gmail.com>
Co-authored-by: zhoubintao <35688959+zbtzbtzbt@users.noreply.github.com>
Co-authored-by: Gabriel <gabrielleebuaa@gmail.com>
Co-authored-by: xinghuayu007 <1450306854@qq.com>
Co-authored-by: weizuo93 <weizuo@apache.org>
Co-authored-by: yiguolei <guoleiyi@tencent.com>
Co-authored-by: anneji-dev <85534151+anneji-dev@users.noreply.github.com>
Co-authored-by: awakeljw <993007281@qq.com>
Co-authored-by: taberylyang <95272637+taberylyang@users.noreply.github.com>
Co-authored-by: Cui Kaifeng <48012748+azurenake@users.noreply.github.com>
## Problem Summary:
### 1. Some code from clickhouse
**ClickHouse is an excellent implementation of the vectorized execution engine database,
so here we have referenced and learned a lot from its excellent implementation in terms of
data structure and function implementation.
We are based on ClickHouse v19.16.2.2 and would like to thank the ClickHouse community and developers.**
The following comment has been added to the code from Clickhouse, eg:
// This file is copied from
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Interpreters/AggregationCommon.h
// and modified by Doris
### 2. Support exec node and query:
* vaggregation_node
* vanalytic_eval_node
* vassert_num_rows_node
* vblocking_join_node
* vcross_join_node
* vempty_set_node
* ves_http_scan_node
* vexcept_node
* vexchange_node
* vintersect_node
* vmysql_scan_node
* vodbc_scan_node
* volap_scan_node
* vrepeat_node
* vschema_scan_node
* vselect_node
* vset_operation_node
* vsort_node
* vunion_node
* vhash_join_node
You can run exec engine of SSB/TPCH and 70% TPCDS stand query test set.
### 3. Data Model
Vec Exec Engine Support **Dup/Agg/Unq** table, Support Block Reader Vectorized.
Segment Vec is working in process.
### 4. How to use
1. Set the environment variable `set enable_vectorized_engine = true; `(required)
2. Set the environment variable `set batch_size = 4096; ` (recommended)
### 5. Some diff from origin exec engine
https://github.com/doris-vectorized/doris-vectorized/issues/294
## Checklist(Required)
1. Does it affect the original behavior: (No)
2. Has unit tests been added: (Yes)
3. Has document been added or modified: (No)
4. Does it need to update dependencies: (No)
5. Are there any changes that cannot be rolled back: (Yes)