There are currently many types of ScanNodes in Doris. And most of the logic of these ScanNodes is the same, including:
Runtime filter
Predicate pushdown
Scanner generation and scheduling
So I intend to unify the common logic of all ScanNodes.
Different data sources only need to implement different Scanners for data access.
So that the future optimization for scan can be applied to the scan of all data sources,
while also reducing the code duplication.
This PR mainly adds 4 new class:
VScanner
All Scanners' parent class. The subclasses can inherit this class to implement specific data access methods.
VScanNode
The unified ScanNode, and is responsible for common logic including RuntimeFilter, predicate pushdown, Scanner generation and scheduling.
ScannerContext
ScannerContext is responsible for recording the execution status
of a group of Scanners corresponding to a ScanNode.
Including how many scanners are being scheduled, and maintaining
a producer-consumer blocks queue between scanners and scan nodes.
ScannerContext is also the scheduling unit of ScannerScheduler.
ScannerScheduler schedules a ScannerContext at a time,
and submits the Scanners to the scanner thread pool for data scanning.
ScannerScheduler
Unified responsible for all Scanner scheduling tasks
Test:
This work is still in progress and default is disabled.
I tested it with jmeter with 50 concurrency, but currently the scanner is just return without data.
The QPS can reach about 9000.
I can't compare it to origin implement because no data is read for now. I will test it when new olap scanner is ready.
Co-authored-by: morningman <morningman@apache.org>
Disable Chunk Allocator in Vectorized Allocator, this will reduce memory cache.
For high concurrent queries, using Chunk Allocator with vectorized Allocator can reduce the impact of gperftools tcmalloc central lock.
Jemalloc or google tcmalloc have core cache, Chunk Allocator may no longer be needed after replacing gperftools tcmalloc.
The memory value automatically tracked by the tcmalloc hook in the DeltaWriter is smaller than the value recorded manually in the memtable, because the first 4096-byte Chunk requested by each MemPool when the memtable is initialized is not tracked to the DeltaWriter by the hook.
The values of the two are not equal, causing the mem_consumption() == _mem_table->memory_usage branch judgment to fail.
Currently, only the virtual memory used by the query can be tracked through the tcmalloc hook. When the memory is not fully used after the application, the recorded virtual memory will be larger than the physical memory.
At present, it is mainly because PODArray does not memset 0 when applying for memory, and blocks applied for through PODArray in places such as VOlapScanNode::_free_blocks are usually used for memory reuse and cannot be fully used.
During load process, the same operation are performed on all replicas such as sort and aggregation,
which are resource-intensive.
Concurrent data load would consume much CPU and memory resources.
It's better to perform write process (writing data into MemTable and then data flush) on single replica
and synchronize data files to other replicas before transaction finished.
1. Fix a bug that query large column table may cause infinite loop
2. Optimize the query logic with limit, for the case where the limit value is relatively small, reduce the parallelism of the scanner, reduce unnecessary resource consumption, and increase the number of similar queries that the system can carry at the same time, and increase the query speed by more than 60%