// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include #include #include #include "olap/field.h" #include "olap/wrapper_field.h" #include "olap/column_predicate.h" #include "olap/comparison_predicate.h" #include "runtime/mem_pool.h" #include "runtime/string_value.hpp" #include "runtime/vectorized_row_batch.h" #include "util/logging.h" namespace doris { namespace datetime { static uint24_t to_date_timestamp(const char* date_string) { tm time_tm; strptime(date_string, "%Y-%m-%d", &time_tm); int value = (time_tm.tm_year + 1900) * 16 * 32 + (time_tm.tm_mon + 1) * 32 + time_tm.tm_mday; return uint24_t(value); } static uint64_t to_datetime_timestamp(const std::string& value_string) { tm time_tm; strptime(value_string.c_str(), "%Y-%m-%d %H:%M:%S", &time_tm); uint64_t value = ((time_tm.tm_year + 1900) * 10000L + (time_tm.tm_mon + 1) * 100L + time_tm.tm_mday) * 1000000L + time_tm.tm_hour * 10000L + time_tm.tm_min * 100L + time_tm.tm_sec; return value; } static std::string to_date_string(uint24_t& date_value) { tm time_tm; int value = date_value; memset(&time_tm, 0, sizeof(time_tm)); time_tm.tm_mday = static_cast(value & 31); time_tm.tm_mon = static_cast(value >> 5 & 15) - 1; time_tm.tm_year = static_cast(value >> 9) - 1900; char buf[20] = {'\0'}; strftime(buf, sizeof(buf), "%Y-%m-%d", &time_tm); return std::string(buf); } static std::string to_datetime_string(uint64_t& datetime_value) { tm time_tm; int64_t part1 = (datetime_value / 1000000L); int64_t part2 = (datetime_value - part1 * 1000000L); time_tm.tm_year = static_cast((part1 / 10000L) % 10000) - 1900; time_tm.tm_mon = static_cast((part1 / 100) % 100) - 1; time_tm.tm_mday = static_cast(part1 % 100); time_tm.tm_hour = static_cast((part2 / 10000L) % 10000); time_tm.tm_min = static_cast((part2 / 100) % 100); time_tm.tm_sec = static_cast(part2 % 100); char buf[20] = {'\0'}; strftime(buf, 20, "%Y-%m-%d %H:%M:%S", &time_tm); return std::string(buf); } }; #define TEST_PREDICATE_DEFINITION(CLASS_NAME) \ class CLASS_NAME : public testing::Test { \ public: \ CLASS_NAME() : _vectorized_batch(NULL) { \ _mem_tracker.reset(new MemTracker(-1)); \ _mem_pool.reset(new MemPool(_mem_tracker.get())); \ } \ ~CLASS_NAME() {\ if (_vectorized_batch != NULL) { \ delete _vectorized_batch; \ } \ } \ void SetTabletSchema(std::string name, \ const std::string& type, const std::string& aggregation, \ uint32_t length, bool is_allow_null, bool is_key, TabletSchema* tablet_schema) { \ TabletSchemaPB tablet_schema_pb; \ static int id = 0; \ ColumnPB* column = tablet_schema_pb.add_column(); \ column->set_unique_id(++id); \ column->set_name(name); \ column->set_type(type); \ column->set_is_key(is_key); \ column->set_is_nullable(is_allow_null); \ column->set_length(length); \ column->set_aggregation(aggregation); \ column->set_precision(1000); \ column->set_frac(1000); \ column->set_is_bf_column(false); \ tablet_schema->init_from_pb(tablet_schema_pb); \ } \ void InitVectorizedBatch(const TabletSchema* tablet_schema, \ const std::vector&ids, \ int size) { \ _vectorized_batch = new VectorizedRowBatch(tablet_schema, ids, size); \ _vectorized_batch->set_size(size); \ } \ std::shared_ptr _mem_tracker; \ std::unique_ptr _mem_pool; \ VectorizedRowBatch* _vectorized_batch; \ }; \ TEST_PREDICATE_DEFINITION(TestEqualPredicate) TEST_PREDICATE_DEFINITION(TestLessPredicate) #define TEST_EQUAL_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \ TEST_F(TestEqualPredicate, TYPE_NAME##_COLUMN) { \ TabletSchema tablet_schema; \ SetTabletSchema(std::string("TYPE_NAME##_COLUMN"), FIELD_TYPE, \ "REPLACE", 1, false, true, &tablet_schema); \ int size = 10; \ std::vector return_columns; \ for (int i = 0; i < tablet_schema.num_columns(); ++i) { \ return_columns.push_back(i); \ } \ InitVectorizedBatch(&tablet_schema, return_columns, size); \ ColumnVector* col_vector = _vectorized_batch->column(0); \ \ /* for no nulls */ \ col_vector->set_no_nulls(true); \ TYPE* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(TYPE))); \ col_vector->set_col_data(col_data); \ for (int i = 0; i < size; ++i) { \ *(col_data + i) = i; \ } \ TYPE value = 5; \ ColumnPredicate* pred = new EqualPredicate(0, value); \ pred->evaluate(_vectorized_batch); \ ASSERT_EQ(_vectorized_batch->size(), 1); \ uint16_t* sel = _vectorized_batch->selected(); \ ASSERT_EQ(*(col_data + sel[0]), 5); \ \ /* for has nulls */ \ col_vector->set_no_nulls(false); \ bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); \ memset(is_null, 0, size); \ col_vector->set_is_null(is_null); \ for (int i = 0; i < size; ++i) { \ if (i % 2 == 0) { \ is_null[i] = true; \ } else { \ *(col_data + i) = i; \ } \ } \ _vectorized_batch->set_size(size); \ _vectorized_batch->set_selected_in_use(false); \ pred->evaluate(_vectorized_batch); \ ASSERT_EQ(_vectorized_batch->size(), 1); \ sel = _vectorized_batch->selected(); \ ASSERT_EQ(*(col_data + sel[0]), 5); \ delete pred; \ } \ TEST_EQUAL_PREDICATE(int8_t, TINYINT, "TINYINT") TEST_EQUAL_PREDICATE(int16_t, SMALLINT, "SMALLINT") TEST_EQUAL_PREDICATE(int32_t, INT, "INT") TEST_EQUAL_PREDICATE(int64_t, BIGINT, "BIGINT") TEST_EQUAL_PREDICATE(int128_t, LARGEINT, "LARGEINT") TEST_F(TestEqualPredicate, FLOAT_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); float* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(float))); col_vector->set_col_data(col_data); for (int i = 0; i < size; ++i) { *(col_data + i) = i; } float value = 5.0; ColumnPredicate* pred = new EqualPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); uint16_t* sel = _vectorized_batch->selected(); ASSERT_FLOAT_EQ(*(col_data + sel[0]), 5.0); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { *(col_data + i) = i; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_FLOAT_EQ(*(col_data + sel[0]), 5.0); delete pred; } TEST_F(TestEqualPredicate, DOUBLE_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); double* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(double))); col_vector->set_col_data(col_data); for (int i = 0; i < size; ++i) { *(col_data + i) = i; } double value = 5.0; ColumnPredicate* pred = new EqualPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); uint16_t* sel = _vectorized_batch->selected(); ASSERT_DOUBLE_EQ(*(col_data + sel[0]), 5.0); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { *(col_data + i) = i; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_DOUBLE_EQ(*(col_data + sel[0]), 5.0); delete pred; } TEST_F(TestEqualPredicate, DECIMAL_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); decimal12_t* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(decimal12_t))); col_vector->set_col_data(col_data); for (int i = 0; i < size; ++i) { (*(col_data + i)).integer = i; (*(col_data + i)).fraction = i; } decimal12_t value(5, 5); ColumnPredicate* pred = new EqualPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); uint16_t* sel = _vectorized_batch->selected(); ASSERT_EQ(*(col_data + sel[0]), value); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { (*(col_data + i)).integer = i; (*(col_data + i)).fraction = i; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_EQ(*(col_data + sel[0]), value); delete pred; } TEST_F(TestEqualPredicate, STRING_COLUMN) { TabletSchema char_tablet_schema; SetTabletSchema(std::string("STRING_COLUMN"), "CHAR", "REPLACE", 5, false, true, &char_tablet_schema); // test WrapperField.from_string() for char type WrapperField* field = WrapperField::create(char_tablet_schema.column(0)); ASSERT_EQ(OLAP_SUCCESS, field->from_string("true")); const std::string tmp = field->to_string(); ASSERT_EQ(5, tmp.size()); ASSERT_EQ('t', tmp[0]); ASSERT_EQ('r', tmp[1]); ASSERT_EQ('u', tmp[2]); ASSERT_EQ('e', tmp[3]); ASSERT_EQ(0, tmp[4]); TabletSchema tablet_schema; SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); StringValue* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(StringValue))); col_vector->set_col_data(col_data); char* string_buffer = reinterpret_cast(_mem_pool->allocate(55)); for (int i = 0; i < size; ++i) { for (int j = 0; j <= i; ++j) { string_buffer[j] = 'a' + i; } (*(col_data + i)).len = i + 1; (*(col_data + i)).ptr = string_buffer; string_buffer += i + 1; } StringValue value; const char* value_buffer = "dddd"; value.len = 4; value.ptr = const_cast(value_buffer); ColumnPredicate* pred = new EqualPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); uint16_t* sel = _vectorized_batch->selected(); ASSERT_EQ(sel[0], 3); ASSERT_EQ(*(col_data + sel[0]), value); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); string_buffer = reinterpret_cast(_mem_pool->allocate(55)); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { for (int j = 0; j <= i; ++j) { string_buffer[j] = 'a' + i; } (*(col_data + i)).len = i + 1; (*(col_data + i)).ptr = string_buffer; } string_buffer += i + 1; } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_EQ(*(col_data + sel[0]), value); delete field; delete pred; } TEST_F(TestEqualPredicate, DATE_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DATE_COLUMN"), "DATA", "REPLACE", 1, false, true, &tablet_schema); int size = 6; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); uint24_t* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(uint24_t))); col_vector->set_col_data(col_data); std::vector date_array; date_array.push_back("2017-09-07"); date_array.push_back("2017-09-08"); date_array.push_back("2017-09-09"); date_array.push_back("2017-09-10"); date_array.push_back("2017-09-11"); date_array.push_back("2017-09-12"); for (int i = 0; i < size; ++i) { uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } uint24_t value = datetime::to_date_timestamp("2017-09-10"); ColumnPredicate* pred = new EqualPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); uint16_t* sel = _vectorized_batch->selected(); ASSERT_EQ(sel[0], 3); ASSERT_EQ(*(col_data + sel[0]), value); ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-10"); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_EQ(*(col_data + sel[0]), value); ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-10"); delete pred; } TEST_F(TestEqualPredicate, DATETIME_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME", "REPLACE", 1, false, true, &tablet_schema); int size = 6; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); uint64_t* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(uint64_t))); col_vector->set_col_data(col_data); std::vector date_array; date_array.push_back("2017-09-07 00:00:00"); date_array.push_back("2017-09-08 00:01:00"); date_array.push_back("2017-09-09 00:00:01"); date_array.push_back("2017-09-10 01:00:00"); date_array.push_back("2017-09-11 01:01:00"); date_array.push_back("2017-09-12 01:01:01"); for (int i = 0; i < size; ++i) { uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } uint64_t value = datetime::to_datetime_timestamp("2017-09-10 01:00:00"); ColumnPredicate* pred = new EqualPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); uint16_t* sel = _vectorized_batch->selected(); ASSERT_EQ(sel[0], 3); ASSERT_EQ(*(col_data + sel[0]), value); ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-10 01:00:00"); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_EQ(*(col_data + sel[0]), value); ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-10 01:00:00"); delete pred; } #define TEST_LESS_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \ TEST_F(TestLessPredicate, TYPE_NAME##_COLUMN) { \ TabletSchema tablet_schema; \ SetTabletSchema(std::string("TYPE_NAME_COLUMN"), FIELD_TYPE, \ "REPLACE", 1, false, true, &tablet_schema); \ int size = 10; \ std::vector return_columns; \ for (int i = 0; i < tablet_schema.num_columns(); ++i) { \ return_columns.push_back(i); \ } \ InitVectorizedBatch(&tablet_schema, return_columns, size); \ ColumnVector* col_vector = _vectorized_batch->column(0); \ \ /* for no nulls */ \ col_vector->set_no_nulls(true); \ TYPE* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(TYPE))); \ col_vector->set_col_data(col_data); \ for (int i = 0; i < size; ++i) { \ *(col_data + i) = i; \ } \ TYPE value = 5; \ ColumnPredicate* pred = new LessPredicate(0, value); \ pred->evaluate(_vectorized_batch); \ ASSERT_EQ(_vectorized_batch->size(), 5); \ uint16_t* sel = _vectorized_batch->selected(); \ TYPE sum = 0; \ for (int i = 0; i < _vectorized_batch->size(); ++i) { \ sum += *(col_data + sel[i]); \ } \ ASSERT_EQ(sum, 10); \ \ /* for has nulls */ \ col_vector->set_no_nulls(false); \ bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); \ memset(is_null, 0, size); \ col_vector->set_is_null(is_null); \ for (int i = 0;i < size; ++i) {\ if (i % 2 == 0) { \ is_null[i] = true; \ } else { \ *(col_data + i) = i; \ } \ } \ _vectorized_batch->set_size(size); \ _vectorized_batch->set_selected_in_use(false); \ pred->evaluate(_vectorized_batch); \ ASSERT_EQ(_vectorized_batch->size(), 2); \ sel = _vectorized_batch->selected(); \ sum = 0; \ for (int i = 0; i < _vectorized_batch->size(); ++i) { \ sum += *(col_data + sel[i]); \ } \ ASSERT_EQ(sum, 4); \ delete pred; \ } \ TEST_LESS_PREDICATE(int8_t, TINYINT, "TINYINT") TEST_LESS_PREDICATE(int16_t, SMALLINT, "SMALLINT") TEST_LESS_PREDICATE(int32_t, INT, "INT") TEST_LESS_PREDICATE(int64_t, BIGINT, "BIGINT") TEST_LESS_PREDICATE(int128_t, LARGEINT, "LARGEINT") TEST_F(TestLessPredicate, FLOAT_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); float* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(float))); col_vector->set_col_data(col_data); for (int i = 0; i < size; ++i) { *(col_data + i) = i; } float value = 5.0; ColumnPredicate* pred = new LessPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 5); uint16_t* sel = _vectorized_batch->selected(); float sum = 0; for (int i = 0; i < _vectorized_batch->size(); ++i) { sum += *(col_data + sel[i]); } ASSERT_FLOAT_EQ(sum, 10.0); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { *(col_data + i) = i; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 2); sel = _vectorized_batch->selected(); \ sum = 0; for (int i = 0; i < _vectorized_batch->size(); ++i) { sum += *(col_data + sel[i]); } ASSERT_FLOAT_EQ(sum, 4.0); delete pred; } TEST_F(TestLessPredicate, DOUBLE_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); double* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(double))); col_vector->set_col_data(col_data); for (int i = 0; i < size; ++i) { *(col_data + i) = i; } double value = 5.0; ColumnPredicate* pred = new LessPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 5); uint16_t* sel = _vectorized_batch->selected(); double sum = 0; for (int i = 0; i < _vectorized_batch->size(); ++i) { sum += *(col_data + sel[i]); } ASSERT_DOUBLE_EQ(sum, 10.0); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { *(col_data + i) = i; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 2); sel = _vectorized_batch->selected(); \ sum = 0; for (int i = 0; i < _vectorized_batch->size(); ++i) { sum += *(col_data + sel[i]); } ASSERT_DOUBLE_EQ(sum, 4.0); delete pred; } TEST_F(TestLessPredicate, DECIMAL_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); decimal12_t* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(decimal12_t))); col_vector->set_col_data(col_data); for (int i = 0; i < size; ++i) { (*(col_data + i)).integer = i; (*(col_data + i)).fraction = i; } decimal12_t value(5, 5); ColumnPredicate* pred = new LessPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 5); uint16_t* sel = _vectorized_batch->selected(); decimal12_t sum(0, 0); for (int i = 0; i < _vectorized_batch->size(); ++i) { sum += *(col_data + sel[i]); } ASSERT_EQ(sum.integer, 10); ASSERT_EQ(sum.fraction, 10); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { (*(col_data + i)).integer = i; (*(col_data + i)).fraction = i; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 2); sum.integer = 0; sum.fraction = 0; for (int i = 0; i < _vectorized_batch->size(); ++i) { sum += *(col_data + sel[i]); } ASSERT_EQ(sum.integer, 4); ASSERT_EQ(sum.fraction, 4); delete pred; } TEST_F(TestLessPredicate, STRING_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR", "REPLACE", 1, false, true, &tablet_schema); int size = 10; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); StringValue* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(StringValue))); col_vector->set_col_data(col_data); char* string_buffer = reinterpret_cast(_mem_pool->allocate(55)); for (int i = 0; i < size; ++i) { for (int j = 0; j <= i; ++j) { string_buffer[j] = 'a' + i; } (*(col_data + i)).len = i + 1; (*(col_data + i)).ptr = string_buffer; string_buffer += i + 1; } StringValue value; const char* value_buffer = "dddd"; value.len = 4; value.ptr = const_cast(value_buffer); ColumnPredicate* pred = new LessPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 3); uint16_t* sel = _vectorized_batch->selected(); ASSERT_TRUE(strncmp((*(col_data + sel[0])).ptr, "a", 1) == 0); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); string_buffer = reinterpret_cast(_mem_pool->allocate(55)); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { for (int j = 0; j <= i; ++j) { string_buffer[j] = 'a' + i; } (*(col_data + i)).len = i + 1; (*(col_data + i)).ptr = string_buffer; } string_buffer += i + 1; } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_TRUE(strncmp((*(col_data + sel[0])).ptr, "bb", 2) == 0); delete pred; } TEST_F(TestLessPredicate, DATE_COLUMN) { TabletSchema tablet_schema; SetTabletSchema(std::string("DATE_COLUMN"), "DATE", "REPLACE", 1, false, true, &tablet_schema); int size = 6; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); uint24_t* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(uint24_t))); col_vector->set_col_data(col_data); std::vector date_array; date_array.push_back("2017-09-07"); date_array.push_back("2017-09-08"); date_array.push_back("2017-09-09"); date_array.push_back("2017-09-10"); date_array.push_back("2017-09-11"); date_array.push_back("2017-09-12"); for (int i = 0; i < size; ++i) { uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } uint24_t value = datetime::to_date_timestamp("2017-09-10"); ColumnPredicate* pred = new LessPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 3); uint16_t* sel = _vectorized_batch->selected(); ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-07"); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-08"); delete pred; } TEST_F(TestLessPredicate, DATETIME_COLUMN) { TabletSchema tablet_schema; TabletColumn tablet_column; SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME", "REPLACE", 1, false, true, &tablet_schema); int size = 6; std::vector return_columns; for (int i = 0; i < tablet_schema.num_columns(); ++i) { return_columns.push_back(i); } InitVectorizedBatch(&tablet_schema, return_columns, size); ColumnVector* col_vector = _vectorized_batch->column(0); // for no nulls col_vector->set_no_nulls(true); uint64_t* col_data = reinterpret_cast(_mem_pool->allocate(size * sizeof(uint64_t))); col_vector->set_col_data(col_data); std::vector date_array; date_array.push_back("2017-09-07 00:00:00"); date_array.push_back("2017-09-08 00:01:00"); date_array.push_back("2017-09-09 00:00:01"); date_array.push_back("2017-09-10 01:00:00"); date_array.push_back("2017-09-11 01:01:00"); date_array.push_back("2017-09-12 01:01:01"); for (int i = 0; i < size; ++i) { uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } uint64_t value = datetime::to_datetime_timestamp("2017-09-10 01:00:00"); ColumnPredicate* pred = new LessPredicate(0, value); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 3); uint16_t* sel = _vectorized_batch->selected(); ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-07 00:00:00"); // for has nulls col_vector->set_no_nulls(false); bool* is_null = reinterpret_cast(_mem_pool->allocate(size)); memset(is_null, 0, size); col_vector->set_is_null(is_null); for (int i = 0; i < size; ++i) { if (i % 2 == 0) { is_null[i] = true; } else { uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str()); *(col_data + i) = timestamp; } } _vectorized_batch->set_size(size); _vectorized_batch->set_selected_in_use(false); pred->evaluate(_vectorized_batch); ASSERT_EQ(_vectorized_batch->size(), 1); sel = _vectorized_batch->selected(); ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-08 00:01:00"); delete pred; } } // namespace doris int main(int argc, char** argv) { int ret = doris::OLAP_SUCCESS; testing::InitGoogleTest(&argc, argv); doris::CpuInfo::init(); ret = RUN_ALL_TESTS(); google::protobuf::ShutdownProtobufLibrary(); return ret; }