// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "exprs/math_functions.h" #include #include #include #include "common/compiler_util.h" #include "exprs/anyval_util.h" #include "exprs/expr.h" #include "runtime/tuple_row.h" #include "runtime/decimal_value.h" #include "util/string_parser.hpp" namespace doris { const char* MathFunctions::_s_alphanumeric_chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const double log_10[] = { 1e000, 1e001, 1e002, 1e003, 1e004, 1e005, 1e006, 1e007, 1e008, 1e009, 1e010, 1e011, 1e012, 1e013, 1e014, 1e015, 1e016, 1e017, 1e018, 1e019, 1e020, 1e021, 1e022, 1e023, 1e024, 1e025, 1e026, 1e027, 1e028, 1e029, 1e030, 1e031, 1e032, 1e033, 1e034, 1e035, 1e036, 1e037, 1e038, 1e039, 1e040, 1e041, 1e042, 1e043, 1e044, 1e045, 1e046, 1e047, 1e048, 1e049, 1e050, 1e051, 1e052, 1e053, 1e054, 1e055, 1e056, 1e057, 1e058, 1e059, 1e060, 1e061, 1e062, 1e063, 1e064, 1e065, 1e066, 1e067, 1e068, 1e069, 1e070, 1e071, 1e072, 1e073, 1e074, 1e075, 1e076, 1e077, 1e078, 1e079, 1e080, 1e081, 1e082, 1e083, 1e084, 1e085, 1e086, 1e087, 1e088, 1e089, 1e090, 1e091, 1e092, 1e093, 1e094, 1e095, 1e096, 1e097, 1e098, 1e099, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168, 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180, 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228, 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240, 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252, 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308 }; #define ARRAY_ELEMENTS(A) ((uint64_t) (sizeof(A)/sizeof(A[0]))) static double my_double_round(double value, int64_t dec, bool dec_unsigned, bool truncate) { bool dec_negative = (dec < 0) && !dec_unsigned; uint64_t abs_dec = dec_negative ? -dec : dec; /* tmp2 is here to avoid return the value with 80 bit precision This will fix that the test round(0.1,1) = round(0.1,1) is true Tagging with volatile is no guarantee, it may still be optimized away... */ volatile double tmp2 = 0.0; double tmp = (abs_dec < ARRAY_ELEMENTS(log_10) ? log_10[abs_dec] : std::pow(10.0, (double)abs_dec)); // Pre-compute these, to avoid optimizing away e.g. 'floor(v/tmp) * tmp'. volatile double value_div_tmp = value / tmp; volatile double value_mul_tmp = value * tmp; if (dec_negative && std::isinf(tmp)) { tmp2 = 0.0; } else if (!dec_negative && std::isinf(value_mul_tmp)) { tmp2 = value; } else if (truncate) { if (value >= 0.0) { tmp2 = dec < 0 ? std::floor(value_div_tmp) * tmp : std::floor(value_mul_tmp) / tmp; } else { tmp2 = dec < 0 ? std::ceil(value_div_tmp) * tmp : std::ceil(value_mul_tmp) / tmp; } } else { tmp2 = dec < 0 ? std::rint(value_div_tmp) * tmp : std::rint(value_mul_tmp) / tmp; } return tmp2; } void MathFunctions::init() { } DoubleVal MathFunctions::pi(FunctionContext* ctx) { return DoubleVal(M_PI); } DoubleVal MathFunctions::e(FunctionContext* ctx) { return DoubleVal(M_E); } // Generates a UDF that always calls FN() on the input val and returns it. #define ONE_ARG_MATH_FN(NAME, RET_TYPE, INPUT_TYPE, FN) \ RET_TYPE MathFunctions::NAME(FunctionContext* ctx, const INPUT_TYPE& v) { \ if (v.is_null) return RET_TYPE::null(); \ return RET_TYPE(FN(v.val)); \ } ONE_ARG_MATH_FN(abs, DoubleVal, DoubleVal, std::fabs); ONE_ARG_MATH_FN(sin, DoubleVal, DoubleVal, std::sin); ONE_ARG_MATH_FN(asin, DoubleVal, DoubleVal, std::asin); ONE_ARG_MATH_FN(cos, DoubleVal, DoubleVal, std::cos); ONE_ARG_MATH_FN(acos, DoubleVal, DoubleVal, std::acos); ONE_ARG_MATH_FN(tan, DoubleVal, DoubleVal, std::tan); ONE_ARG_MATH_FN(atan, DoubleVal, DoubleVal, std::atan); ONE_ARG_MATH_FN(sqrt, DoubleVal, DoubleVal, std::sqrt); ONE_ARG_MATH_FN(ceil, BigIntVal, DoubleVal, std::ceil); ONE_ARG_MATH_FN(floor, BigIntVal, DoubleVal, std::floor); ONE_ARG_MATH_FN(ln, DoubleVal, DoubleVal, std::log); ONE_ARG_MATH_FN(log10, DoubleVal, DoubleVal, std::log10); ONE_ARG_MATH_FN(exp, DoubleVal, DoubleVal, std::exp); FloatVal MathFunctions::sign( FunctionContext* ctx, const DoubleVal& v) { if (v.is_null) { return FloatVal::null(); } return FloatVal((v.val > 0) ? 1.0f : ((v.val < 0) ? -1.0f : 0.0f)); } DoubleVal MathFunctions::radians( FunctionContext* ctx, const DoubleVal& v) { if (v.is_null) { return v; } return DoubleVal(v.val * M_PI / 180.0); } DoubleVal MathFunctions::degrees( FunctionContext* ctx, const DoubleVal& v) { if (v.is_null) { return v; } return DoubleVal(v.val * 180.0 / M_PI); } BigIntVal MathFunctions::round( FunctionContext* ctx, const DoubleVal& v) { if (v.is_null) { return BigIntVal::null(); } return BigIntVal(static_cast(v.val + ((v.val < 0) ? -0.5 : 0.5))); } DoubleVal MathFunctions::round_up_to( FunctionContext* ctx, const DoubleVal& v, const IntVal& scale) { if (v.is_null || scale.is_null) { return DoubleVal::null(); } return DoubleVal(my_double_round(v.val, scale.val, false, false)); } DoubleVal MathFunctions::truncate( FunctionContext* ctx, const DoubleVal& v, const IntVal& scale) { if (v.is_null || scale.is_null) { return DoubleVal::null(); } return DoubleVal(my_double_round(v.val, scale.val, false, true)); } DoubleVal MathFunctions::log2( FunctionContext* ctx, const DoubleVal& v) { if (v.is_null) { return DoubleVal::null(); } return DoubleVal(std::log(v.val) / std::log(2.0)); } const double EPSILON = 1e-9; DoubleVal MathFunctions::log( FunctionContext* ctx, const DoubleVal& base, const DoubleVal& v) { if (base.is_null || v.is_null) { return DoubleVal::null(); } if (base.val <= 0 || std::fabs(base.val - 1.0) < EPSILON || v.val <= 0.0) { return DoubleVal::null(); } return DoubleVal(std::log(v.val) / std::log(base.val)); } DoubleVal MathFunctions::pow( FunctionContext* ctx, const DoubleVal& base, const DoubleVal& exp) { if (base.is_null || exp.is_null) { return DoubleVal::null(); } return DoubleVal(std::pow(base.val, exp.val)); } void MathFunctions::rand_prepare( FunctionContext* ctx, FunctionContext::FunctionStateScope scope) { if (scope == FunctionContext::THREAD_LOCAL) { uint32_t* seed = reinterpret_cast(ctx->allocate(sizeof(uint32_t))); ctx->set_function_state(scope, seed); if (ctx->get_num_args() == 1) { // This is a call to RandSeed, initialize the seed // TODO: should we support non-constant seed? if (!ctx->is_arg_constant(0)) { ctx->set_error("Seed argument to rand() must be constant"); return; } BigIntVal* seed_arg = static_cast(ctx->get_constant_arg(0)); if (seed_arg->is_null) { seed = NULL; } else { *seed = seed_arg->val; } } else { // This is a call to Rand, initialize seed to 0 // TODO: can we change this behavior? This is stupid. *seed = 0; } } } DoubleVal MathFunctions::rand(FunctionContext* ctx) { uint32_t* seed = reinterpret_cast( ctx->get_function_state(FunctionContext::THREAD_LOCAL)); *seed = ::rand_r(seed); // Normalize to [0,1]. return DoubleVal(static_cast(*seed) / RAND_MAX); } DoubleVal MathFunctions::rand_seed(FunctionContext* ctx, const BigIntVal& seed) { if (seed.is_null) { return DoubleVal::null(); } return rand(ctx); } StringVal MathFunctions::bin(FunctionContext* ctx, const BigIntVal& v) { if (v.is_null) { return StringVal::null(); } // Cast to an unsigned integer because it is compiler dependent // whether the sign bit will be shifted like a regular bit. // (logical vs. arithmetic shift for signed numbers) uint64_t n = static_cast(v.val); const size_t max_bits = sizeof(uint64_t) * 8; char result[max_bits]; uint32_t index = max_bits; do { result[--index] = '0' + (n & 1); } while (n >>= 1); return AnyValUtil::from_buffer_temp(ctx, result + index, max_bits - index); } StringVal MathFunctions::hex_int(FunctionContext* ctx, const BigIntVal& v) { if (v.is_null) { return StringVal::null(); } // TODO: this is probably unreasonably slow std::stringstream ss; ss << std::hex << std::uppercase << v.val; return AnyValUtil::from_string_temp(ctx, ss.str()); } StringVal MathFunctions::hex_string(FunctionContext* ctx, const StringVal& s) { if (s.is_null) { return StringVal::null(); } std::stringstream ss; ss << std::hex << std::uppercase << std::setfill('0'); for (int i = 0; i < s.len; ++i) { // setw is not sticky. stringstream only converts integral values, // so a cast to int is required, but only convert the least significant byte to hex. ss << std::setw(2) << (static_cast(s.ptr[i]) & 0xFF); } return AnyValUtil::from_string_temp(ctx, ss.str()); } StringVal MathFunctions::unhex(FunctionContext* ctx, const StringVal& s) { if (s.is_null) { return StringVal::null(); } // For uneven number of chars return empty string like Hive does. if (s.len % 2 != 0) { return StringVal(); } int result_len = s.len / 2; char result[result_len]; int res_index = 0; int s_index = 0; while (s_index < s.len) { char c = 0; for (int j = 0; j < 2; ++j, ++s_index) { switch (s.ptr[s_index]) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': c += (s.ptr[s_index] - '0') * ((j == 0) ? 16 : 1); break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': // Map to decimal values [10, 15] c += (s.ptr[s_index] - 'A' + 10) * ((j == 0) ? 16 : 1); break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': // Map to decimal [10, 15] c += (s.ptr[s_index] - 'a' + 10) * ((j == 0) ? 16 : 1); break; default: // Character not in hex alphabet, return empty string. return StringVal(); } } result[res_index] = c; ++res_index; } return AnyValUtil::from_buffer_temp(ctx, result, result_len); } StringVal MathFunctions::conv_int( FunctionContext* ctx, const BigIntVal& num, const TinyIntVal& src_base, const TinyIntVal& dest_base) { if (num.is_null || src_base.is_null || dest_base.is_null) { return StringVal::null(); } // As in MySQL and Hive, min base is 2 and max base is 36. // (36 is max base representable by alphanumeric chars) // If a negative target base is given, num should be interpreted in 2's complement. if (std::abs(src_base.val) < MIN_BASE || std::abs(src_base.val) > MAX_BASE || std::abs(dest_base.val) < MIN_BASE || std::abs(dest_base.val) > MAX_BASE) { // Return NULL like Hive does. return StringVal::null(); } // Invalid input. if (src_base.val < 0 && num.val >= 0) { return StringVal::null(); } int64_t decimal_num = num.val; if (src_base.val != 10) { // Convert src_num representing a number in src_base but encoded in decimal // into its actual decimal number. if (!decimal_in_base_to_decimal(num.val, src_base.val, &decimal_num)) { // Handle overflow, setting decimal_num appropriately. handle_parse_result(dest_base.val, &decimal_num, StringParser::PARSE_OVERFLOW); } } return decimal_to_base(ctx, decimal_num, dest_base.val); } StringVal MathFunctions::conv_string( FunctionContext* ctx, const StringVal& num_str, const TinyIntVal& src_base, const TinyIntVal& dest_base) { if (num_str.is_null || src_base.is_null || dest_base.is_null) { return StringVal::null(); } // As in MySQL and Hive, min base is 2 and max base is 36. // (36 is max base representable by alphanumeric chars) // If a negative target base is given, num should be interpreted in 2's complement. if (std::abs(src_base.val) < MIN_BASE || std::abs(src_base.val) > MAX_BASE || std::abs(dest_base.val) < MIN_BASE || std::abs(dest_base.val) > MAX_BASE) { // Return NULL like Hive does. return StringVal::null(); } // Convert digits in num_str in src_base to decimal. StringParser::ParseResult parse_res; int64_t decimal_num = StringParser::string_to_int( reinterpret_cast(num_str.ptr), num_str.len, src_base.val, &parse_res); if (src_base.val < 0 && decimal_num >= 0) { // Invalid input. return StringVal::null(); } if (!handle_parse_result(dest_base.val, &decimal_num, parse_res)) { // Return 0 for invalid input strings like Hive does. return StringVal(reinterpret_cast(const_cast("0")), 1); } return decimal_to_base(ctx, decimal_num, dest_base.val); } StringVal MathFunctions::decimal_to_base( FunctionContext* ctx, int64_t src_num, int8_t dest_base) { // Max number of digits of any base (base 2 gives max digits), plus sign. const size_t max_digits = sizeof(uint64_t) * 8 + 1; char buf[max_digits]; int32_t result_len = 0; int32_t buf_index = max_digits - 1; uint64_t temp_num; if (dest_base < 0) { // Dest base is negative, treat src_num as signed. temp_num = std::abs(src_num); } else { // Dest base is positive. We must interpret src_num in 2's complement. // Convert to an unsigned int to properly deal with 2's complement conversion. temp_num = static_cast(src_num); } int abs_base = std::abs(dest_base); do { buf[buf_index] = _s_alphanumeric_chars[temp_num % abs_base]; temp_num /= abs_base; --buf_index; ++result_len; } while (temp_num > 0); // Add optional sign. if (src_num < 0 && dest_base < 0) { buf[buf_index] = '-'; ++result_len; } return AnyValUtil::from_buffer_temp(ctx, buf + max_digits - result_len, result_len); } bool MathFunctions::decimal_in_base_to_decimal( int64_t src_num, int8_t src_base, int64_t* result) { uint64_t temp_num = std::abs(src_num); int32_t place = 1; *result = 0; do { int32_t digit = temp_num % 10; // Reset result if digit is not representable in src_base. if (digit >= src_base) { *result = 0; place = 1; } else { *result += digit * place; place *= src_base; // Overflow. if (UNLIKELY(*result < digit)) { return false; } } temp_num /= 10; } while (temp_num > 0); *result = (src_num < 0) ? -(*result) : *result; return true; } bool MathFunctions::handle_parse_result( int8_t dest_base, int64_t* num, StringParser::ParseResult parse_res) { // On overflow set special value depending on dest_base. // This is consistent with Hive and MySQL's behavior. if (parse_res == StringParser::PARSE_OVERFLOW) { if (dest_base < 0) { *num = -1; } else { *num = std::numeric_limits::max(); } } else if (parse_res == StringParser::PARSE_FAILURE) { // Some other error condition. return false; } return true; } BigIntVal MathFunctions::pmod_bigint( FunctionContext* ctx, const BigIntVal& a, const BigIntVal& b) { if (a.is_null || b.is_null) { return BigIntVal::null(); } return BigIntVal(((a.val % b.val) + b.val) % b.val); } DoubleVal MathFunctions::pmod_double( FunctionContext* ctx, const DoubleVal& a, const DoubleVal& b) { if (a.is_null || b.is_null) { return DoubleVal::null(); } return DoubleVal(fmod(fmod(a.val, b.val) + b.val, b.val)); } FloatVal MathFunctions::fmod_float( FunctionContext* ctx, const FloatVal& a, const FloatVal& b) { if (a.is_null || b.is_null || b.val == 0) { return FloatVal::null(); } return FloatVal(fmodf(a.val, b.val)); } DoubleVal MathFunctions::fmod_double( FunctionContext* ctx, const DoubleVal& a, const DoubleVal& b) { if (a.is_null || b.is_null || b.val == 0) { return DoubleVal::null(); } return DoubleVal(fmod(a.val, b.val)); } BigIntVal MathFunctions::positive_bigint( FunctionContext* ctx, const BigIntVal& val) { return val; } DoubleVal MathFunctions::positive_double( FunctionContext* ctx, const DoubleVal& val) { return val; } DecimalVal MathFunctions::positive_decimal( FunctionContext* ctx, const DecimalVal& val) { return val; } BigIntVal MathFunctions::negative_bigint( FunctionContext* ctx, const BigIntVal& val) { if (val.is_null) { return val; } return BigIntVal(-val.val); } DoubleVal MathFunctions::negative_double( FunctionContext* ctx, const DoubleVal& val) { if (val.is_null) { return val; } return DoubleVal(-val.val); } DecimalVal MathFunctions::negative_decimal( FunctionContext* ctx, const DecimalVal& val) { if (val.is_null) { return val; } const DecimalValue& dv1 = DecimalValue::from_decimal_val(val); LOG(INFO) << dv1.to_string(); DecimalVal result; LOG(INFO) << (-dv1).to_string(); (-dv1).to_decimal_val(&result); return result; } #define LEAST_FN(TYPE) \ TYPE MathFunctions::least(\ FunctionContext* ctx, int num_args, const TYPE* args) { \ if (args[0].is_null) return TYPE::null(); \ int result_idx = 0; \ for (int i = 1; i < num_args; ++i) { \ if (args[i].is_null) return TYPE::null(); \ if (args[i].val < args[result_idx].val) result_idx = i; \ } \ return TYPE(args[result_idx].val); \ } #define LEAST_FNS() \ LEAST_FN(TinyIntVal); \ LEAST_FN(SmallIntVal); \ LEAST_FN(IntVal); \ LEAST_FN(BigIntVal); \ LEAST_FN(LargeIntVal); \ LEAST_FN(FloatVal); \ LEAST_FN(DoubleVal); LEAST_FNS(); #define LEAST_NONNUMERIC_FN(TYPE_NAME, TYPE, DORIS_TYPE) \ TYPE MathFunctions::least(\ FunctionContext* ctx, int num_args, const TYPE* args) { \ if (args[0].is_null) return TYPE::null(); \ DORIS_TYPE result_val = DORIS_TYPE::from_##TYPE_NAME(args[0]); \ for (int i = 1; i < num_args; ++i) { \ if (args[i].is_null) return TYPE::null(); \ DORIS_TYPE val = DORIS_TYPE::from_##TYPE_NAME(args[i]); \ if (val < result_val) result_val = val; \ } \ TYPE result; \ result_val.to_##TYPE_NAME(&result); \ return result; \ } #define LEAST_NONNUMERIC_FNS() \ LEAST_NONNUMERIC_FN(string_val, StringVal, StringValue); \ LEAST_NONNUMERIC_FN(datetime_val, DateTimeVal, DateTimeValue); \ LEAST_NONNUMERIC_FN(decimal_val, DecimalVal, DecimalValue); \ LEAST_NONNUMERIC_FNS(); #define GREATEST_FN(TYPE) \ TYPE MathFunctions::greatest(\ FunctionContext* ctx, int num_args, const TYPE* args) { \ if (args[0].is_null) return TYPE::null(); \ int result_idx = 0; \ for (int i = 1; i < num_args; ++i) { \ if (args[i].is_null) return TYPE::null(); \ if (args[i].val > args[result_idx].val) result_idx = i; \ } \ return TYPE(args[result_idx].val); \ } #define GREATEST_FNS() \ GREATEST_FN(TinyIntVal); \ GREATEST_FN(SmallIntVal); \ GREATEST_FN(IntVal); \ GREATEST_FN(BigIntVal); \ GREATEST_FN(LargeIntVal); \ GREATEST_FN(FloatVal); \ GREATEST_FN(DoubleVal); GREATEST_FNS(); #define GREATEST_NONNUMERIC_FN(TYPE_NAME, TYPE, DORIS_TYPE) \ TYPE MathFunctions::greatest(\ FunctionContext* ctx, int num_args, const TYPE* args) { \ if (args[0].is_null) return TYPE::null(); \ DORIS_TYPE result_val = DORIS_TYPE::from_##TYPE_NAME(args[0]); \ for (int i = 1; i < num_args; ++i) { \ if (args[i].is_null) return TYPE::null(); \ DORIS_TYPE val = DORIS_TYPE::from_##TYPE_NAME(args[i]); \ if (val > result_val) result_val = val; \ } \ TYPE result; \ result_val.to_##TYPE_NAME(&result); \ return result; \ } #define GREATEST_NONNUMERIC_FNS() \ GREATEST_NONNUMERIC_FN(string_val, StringVal, StringValue); \ GREATEST_NONNUMERIC_FN(datetime_val, DateTimeVal, DateTimeValue); \ GREATEST_NONNUMERIC_FN(decimal_val, DecimalVal, DecimalValue); \ GREATEST_NONNUMERIC_FNS(); #if 0 void* MathFunctions::greatest_bigint(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { int64_t* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg > *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.bigint_val; } void* MathFunctions::greatest_double(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { double* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg > *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.double_val; } void* MathFunctions::greatest_decimal(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { DecimalValue* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg > *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.decimal_val; } void* MathFunctions::greatest_string(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { StringValue* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg > *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.string_val; } void* MathFunctions::greatest_timestamp(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { DateTimeValue* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg > *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.datetime_val; } void* MathFunctions::least_bigint(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { int64_t* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg < *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.bigint_val; } void* MathFunctions::least_double(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { double* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg < *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.double_val; } void* MathFunctions::least_decimal(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { DecimalValue* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg < *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.decimal_val; } void* MathFunctions::least_string(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { StringValue* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg < *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.string_val; } void* MathFunctions::least_timestamp(Expr* e, TupleRow* row) { DCHECK_GE(e->get_num_children(), 1); int32_t num_args = e->get_num_children(); int result_idx = 0; // NOTE: loop index starts at 0, so If frist arg is NULL, we can return early.. for (int i = 0; i < num_args; ++i) { DateTimeValue* arg = reinterpret_cast(e->children()[i]->get_value(row)); if (arg == NULL) { return NULL; } if (*arg < *reinterpret_cast(e->children()[result_idx]->get_value(row))) { result_idx = i; } } return &e->children()[result_idx]->_result.datetime_val; } #endif }