// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "vec/data_types/number_traits.h" #include "vec/functions/function_const.h" #include "vec/functions/function_binary_arithmetic.h" #include "vec/functions/function_binary_arithmetic_to_null_type.h" #include "vec/functions/function_math_unary.h" #include "vec/functions/function_math_unary_to_null_type.h" #include "vec/functions/function_string.h" #include "vec/functions/function_totype.h" #include "vec/functions/function_unary_arithmetic.h" #include "vec/functions/simple_function_factory.h" namespace doris::vectorized { const double log_10[] = { 1e000, 1e001, 1e002, 1e003, 1e004, 1e005, 1e006, 1e007, 1e008, 1e009, 1e010, 1e011, 1e012, 1e013, 1e014, 1e015, 1e016, 1e017, 1e018, 1e019, 1e020, 1e021, 1e022, 1e023, 1e024, 1e025, 1e026, 1e027, 1e028, 1e029, 1e030, 1e031, 1e032, 1e033, 1e034, 1e035, 1e036, 1e037, 1e038, 1e039, 1e040, 1e041, 1e042, 1e043, 1e044, 1e045, 1e046, 1e047, 1e048, 1e049, 1e050, 1e051, 1e052, 1e053, 1e054, 1e055, 1e056, 1e057, 1e058, 1e059, 1e060, 1e061, 1e062, 1e063, 1e064, 1e065, 1e066, 1e067, 1e068, 1e069, 1e070, 1e071, 1e072, 1e073, 1e074, 1e075, 1e076, 1e077, 1e078, 1e079, 1e080, 1e081, 1e082, 1e083, 1e084, 1e085, 1e086, 1e087, 1e088, 1e089, 1e090, 1e091, 1e092, 1e093, 1e094, 1e095, 1e096, 1e097, 1e098, 1e099, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163, 1e164, 1e165, 1e166, 1e167, 1e168, 1e169, 1e170, 1e171, 1e172, 1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180, 1e181, 1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190, 1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199, 1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208, 1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217, 1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226, 1e227, 1e228, 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235, 1e236, 1e237, 1e238, 1e239, 1e240, 1e241, 1e242, 1e243, 1e244, 1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252, 1e253, 1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262, 1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271, 1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279, 1e280, 1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289, 1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298, 1e299, 1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307, 1e308}; #define ARRAY_ELEMENTS(A) ((uint64_t)(sizeof(A) / sizeof(A[0]))) double my_double_round(double value, int64_t dec, bool dec_unsigned, bool truncate) { bool dec_negative = (dec < 0) && !dec_unsigned; uint64_t abs_dec = dec_negative ? -dec : dec; /* tmp2 is here to avoid return the value with 80 bit precision This will fix that the test round(0.1,1) = round(0.1,1) is true Tagging with volatile is no guarantee, it may still be optimized away... */ volatile double tmp2 = 0.0; double tmp = (abs_dec < ARRAY_ELEMENTS(log_10) ? log_10[abs_dec] : std::pow(10.0, (double)abs_dec)); // Pre-compute these, to avoid optimizing away e.g. 'floor(v/tmp) * tmp'. volatile double value_div_tmp = value / tmp; volatile double value_mul_tmp = value * tmp; if (dec_negative && std::isinf(tmp)) { tmp2 = 0.0; } else if (!dec_negative && std::isinf(value_mul_tmp)) { tmp2 = value; } else if (truncate) { if (value >= 0.0) { tmp2 = dec < 0 ? std::floor(value_div_tmp) * tmp : std::floor(value_mul_tmp) / tmp; } else { tmp2 = dec < 0 ? std::ceil(value_div_tmp) * tmp : std::ceil(value_mul_tmp) / tmp; } } else { tmp2 = dec < 0 ? std::round(value_div_tmp) * tmp : std::round(value_mul_tmp) / tmp; } return tmp2; } struct AcosName { static constexpr auto name = "acos"; }; using FunctionAcos = FunctionMathUnary>; struct AsinName { static constexpr auto name = "asin"; }; using FunctionAsin = FunctionMathUnary>; struct AtanName { static constexpr auto name = "atan"; }; using FunctionAtan = FunctionMathUnary>; struct CosName { static constexpr auto name = "cos"; }; using FunctionCos = FunctionMathUnary>; struct EImpl { static constexpr auto name = "e"; static constexpr double value = 2.7182818284590452353602874713526624977572470; }; using FunctionE = FunctionMathConstFloat64; struct PiImpl { static constexpr auto name = "pi"; static constexpr double value = 3.1415926535897932384626433832795028841971693; }; using FunctionPi = FunctionMathConstFloat64; struct ExpName { static constexpr auto name = "exp"; }; using FunctionExp = FunctionMathUnary>; #define LOG_FUNCTION_IMPL(CLASS, NAME, FUNC) \ struct CLASS##Impl { \ using Type = DataTypeFloat64; \ using RetType = Float64; \ static constexpr auto name = #NAME; \ template \ static void execute(const T* src, U* dst, UInt8& null_flag) { \ null_flag = src[0] <= 0; \ dst[0] = static_cast(FUNC((double)src[0])); \ } \ }; \ using Function##CLASS = FunctionMathUnaryToNullType; LOG_FUNCTION_IMPL(Log10, log10, std::log10); LOG_FUNCTION_IMPL(Log2, log2, std::log2); LOG_FUNCTION_IMPL(Ln, ln, std::log); struct LogName { static constexpr auto name = "log"; }; template struct LogImpl { using ResultType = Float64; static const constexpr bool allow_decimal = false; template static inline Result apply(A a, B b, NullMap& null_map, size_t index) { constexpr double EPSILON = 1e-9; null_map[index] = a <= 0 || b <= 0 || std::fabs(a - 1.0) < EPSILON; return static_cast(std::log(static_cast(b)) / std::log(static_cast(a))); } }; using FunctionLog = FunctionBinaryArithmeticToNullType; struct CeilName { static constexpr auto name = "ceil"; }; using FunctionCeil = FunctionMathUnary>; template struct SignImpl { using ResultType = Int8; static inline ResultType apply(A a) { if constexpr (IsDecimalNumber || std::is_floating_point_v) return static_cast(a < A(0) ? -1 : a == A(0) ? 0 : 1); else if constexpr (std::is_signed_v) return static_cast(a < 0 ? -1 : a == 0 ? 0 : 1); else if constexpr (std::is_unsigned_v) return static_cast(a == 0 ? 0 : 1); } }; struct NameSign { static constexpr auto name = "sign"; }; using FunctionSign = FunctionUnaryArithmetic; template struct AbsImpl { using ResultType = std::conditional_t, A, typename NumberTraits::ResultOfAbs::Type>; static inline ResultType apply(A a) { if constexpr (IsDecimalNumber) return a < 0 ? A(-a) : a; else if constexpr (std::is_integral_v && std::is_signed_v) return a < 0 ? static_cast(~a) + 1 : a; else if constexpr (std::is_integral_v && std::is_unsigned_v) return static_cast(a); else if constexpr (std::is_floating_point_v) return static_cast(std::abs(a)); } }; struct NameAbs { static constexpr auto name = "abs"; }; using FunctionAbs = FunctionUnaryArithmetic; template struct NegativeImpl { using ResultType = A; static inline ResultType apply(A a) { return -a; } }; struct NameNegative { static constexpr auto name = "negative"; }; using FunctionNegative = FunctionUnaryArithmetic; template struct PositiveImpl { using ResultType = A; static inline ResultType apply(A a) { return static_cast(a); } }; struct NamePositive { static constexpr auto name = "positive"; }; using FunctionPositive = FunctionUnaryArithmetic; struct SinName { static constexpr auto name = "sin"; }; using FunctionSin = FunctionMathUnary>; struct SqrtName { static constexpr auto name = "sqrt"; }; using FunctionSqrt = FunctionMathUnary>; struct TanName { static constexpr auto name = "tan"; }; using FunctionTan = FunctionMathUnary>; struct FloorName { static constexpr auto name = "floor"; }; using FunctionFloor = FunctionMathUnary>; template struct RadiansImpl { using ResultType = A; static inline ResultType apply(A a) { return static_cast(a * PiImpl::value / 180.0); } }; struct NameRadians { static constexpr auto name = "radians"; }; using FunctionRadians = FunctionUnaryArithmetic; template struct DegreesImpl { using ResultType = A; static inline ResultType apply(A a) { return static_cast(a * 180.0 / PiImpl::value); } }; struct NameDegrees { static constexpr auto name = "degrees"; }; using FunctionDegrees = FunctionUnaryArithmetic; struct NameBin { static constexpr auto name = "bin"; }; struct BinImpl { using ReturnType = DataTypeString; static constexpr auto TYPE_INDEX = TypeIndex::Int64; using Type = Int64; using ReturnColumnType = ColumnString; static std::string bin_impl(Int64 value) { uint64_t n = static_cast(value); const size_t max_bits = sizeof(uint64_t) * 8; char result[max_bits]; uint32_t index = max_bits; do { result[--index] = '0' + (n & 1); } while (n >>= 1); return std::string(result + index, max_bits - index); } static Status vector(const ColumnInt64::Container& data, ColumnString::Chars& res_data, ColumnString::Offsets& res_offsets) { res_offsets.resize(data.size()); size_t input_size = res_offsets.size(); for (size_t i = 0; i < input_size; ++i) { StringOP::push_value_string(bin_impl(data[i]), i, res_data, res_offsets); } return Status::OK(); } }; using FunctionBin = FunctionUnaryToType; struct RoundName { static constexpr auto name = "round"; }; /// round(double)-->int64 /// key_str:roundFloat64 template struct RoundOneImpl { using Type = DataTypeInt64; static constexpr auto name = RoundName::name; static constexpr auto rows_per_iteration = 1; static constexpr bool always_returns_float64 = false; static DataTypes get_variadic_argument_types() { return {std::make_shared()}; } template static void execute(const T* src, U* dst) { dst[0] = static_cast(std::round(static_cast(src[0]))); } }; using FunctionRoundOne = FunctionMathUnary>; template struct PowImpl { using ResultType = double; static const constexpr bool allow_decimal = false; template static inline double apply(A a, B b) { /// Next everywhere, static_cast - so that there is no wrong result in expressions of the form Int64 c = UInt32(a) * Int32(-1). return std::pow((double)a, (double) b); } }; struct PowName { static constexpr auto name = "pow"; }; using FunctionPow = FunctionBinaryArithmetic; template struct TruncateImpl { using ResultType = double; static const constexpr bool allow_decimal = false; template static inline double apply(A a, B b) { /// Next everywhere, static_cast - so that there is no wrong result in expressions of the form Int64 c = UInt32(a) * Int32(-1). return static_cast(my_double_round( static_cast(a), static_cast(b), false, true)); } }; struct TruncateName { static constexpr auto name = "truncate"; }; using FunctionTruncate = FunctionBinaryArithmetic; /// round(double,int32)-->double /// key_str:roundFloat64Int32 template struct RoundTwoImpl { using ResultType = double; static const constexpr bool allow_decimal = false; static DataTypes get_variadic_argument_types() { return {std::make_shared(), std::make_shared()}; } template static inline double apply(A a, B b) { /// Next everywhere, static_cast - so that there is no wrong result in expressions of the form Int64 c = UInt32(a) * Int32(-1). return static_cast(my_double_round( static_cast(a), static_cast(b), false, false)); } }; using FunctionRoundTwo = FunctionBinaryArithmetic; // TODO: Now math may cause one thread compile time too long, because the function in math // so mush. Split it to speed up compile time in the future void register_function_math(SimpleFunctionFactory& factory) { factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_alias("ceil", "dceil"); factory.register_alias("ceil", "ceiling"); factory.register_function(); factory.register_function(); factory.register_alias("ln", "dlog1"); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_alias("log10", "dlog10"); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_alias("sqrt", "dsqrt"); factory.register_function(); factory.register_function(); factory.register_alias("floor", "dfloor"); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_alias("pow", "power"); factory.register_alias("pow", "dpow"); factory.register_alias("pow", "fpow"); factory.register_function(); factory.register_alias("exp", "dexp"); factory.register_function(); factory.register_function(); factory.register_function(); factory.register_function(); } } // namespace doris::vectorized