// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "vec/olap/vcollect_iterator.h" #include "common/status.h" #include "util/defer_op.h" namespace doris { using namespace ErrorCode; namespace vectorized { #define RETURN_IF_NOT_EOF_AND_OK(stmt) \ do { \ const Status& _status_ = (stmt); \ if (UNLIKELY(!_status_.ok() && !_status_.is())) { \ return _status_; \ } \ } while (false) VCollectIterator::~VCollectIterator() { for (auto child : _children) { delete child; } } void VCollectIterator::init(TabletReader* reader, bool ori_data_overlapping, bool force_merge, bool is_reverse) { _reader = reader; // when aggregate is enabled or key_type is DUP_KEYS, we don't merge // multiple data to aggregate for better performance if (_reader->_reader_type == READER_QUERY && (_reader->_direct_mode || _reader->_tablet->keys_type() == KeysType::DUP_KEYS || (_reader->_tablet->keys_type() == KeysType::UNIQUE_KEYS && _reader->_tablet->enable_unique_key_merge_on_write()))) { _merge = false; } // When data is none overlapping, no need to build heap to traverse data if (!ori_data_overlapping) { _merge = false; } else if (force_merge) { _merge = true; } _is_reverse = is_reverse; } Status VCollectIterator::add_child(RowsetReaderSharedPtr rs_reader) { std::unique_ptr child(new Level0Iterator(rs_reader, _reader)); _children.push_back(child.release()); return Status::OK(); } // Build a merge heap. If _merge is true, a rowset with the max rownum // status will be used as the base rowset, and the other rowsets will be merged first and // then merged with the base rowset. Status VCollectIterator::build_heap(std::vector& rs_readers) { DCHECK(rs_readers.size() == _children.size()); _skip_same = _reader->_tablet_schema->keys_type() == KeysType::UNIQUE_KEYS; if (_children.empty()) { _inner_iter.reset(nullptr); return Status::OK(); } else if (_merge) { DCHECK(!rs_readers.empty()); bool have_multiple_child = false; for (auto [c_iter, r_iter] = std::pair {_children.begin(), rs_readers.begin()}; c_iter != _children.end();) { auto s = (*c_iter)->init(have_multiple_child); if (!s.ok()) { delete (*c_iter); c_iter = _children.erase(c_iter); r_iter = rs_readers.erase(r_iter); if (!s.is()) { return s; } } else { have_multiple_child = true; ++c_iter; ++r_iter; } } // build merge heap with two children, a base rowset as level0iterator and // other cumulative rowsets as a level1iterator if (_children.size() > 1) { // find 'base rowset', 'base rowset' is the rowset which contains the max row number int64_t max_row_num = 0; int base_reader_idx = 0; for (size_t i = 0; i < rs_readers.size(); ++i) { int64_t cur_row_num = rs_readers[i]->rowset()->rowset_meta()->num_rows(); if (cur_row_num > max_row_num) { max_row_num = cur_row_num; base_reader_idx = i; } } auto base_reader_child = _children.begin(); std::advance(base_reader_child, base_reader_idx); std::list cumu_children; int i = 0; for (const auto& child : _children) { if (i != base_reader_idx) { cumu_children.push_back(child); } ++i; } Level1Iterator* cumu_iter = new Level1Iterator( cumu_children, _reader, cumu_children.size() > 1, _is_reverse, _skip_same); RETURN_IF_NOT_EOF_AND_OK(cumu_iter->init()); std::list children; children.push_back(*base_reader_child); children.push_back(cumu_iter); _inner_iter.reset( new Level1Iterator(children, _reader, _merge, _is_reverse, _skip_same)); } else { // _children.size() == 1 _inner_iter.reset( new Level1Iterator(_children, _reader, _merge, _is_reverse, _skip_same)); } } else { bool have_multiple_child = false; bool is_first_child = true; for (auto iter = _children.begin(); iter != _children.end();) { auto s = (*iter)->init_for_union(is_first_child, have_multiple_child); if (!s.ok()) { delete (*iter); iter = _children.erase(iter); if (!s.is()) { return s; } } else { have_multiple_child = true; is_first_child = false; ++iter; } } _inner_iter.reset(new Level1Iterator(_children, _reader, _merge, _is_reverse, _skip_same)); } RETURN_IF_NOT_EOF_AND_OK(_inner_iter->init()); // Clear _children earlier to release any related references _children.clear(); return Status::OK(); } bool VCollectIterator::LevelIteratorComparator::operator()(LevelIterator* lhs, LevelIterator* rhs) { const IteratorRowRef& lhs_ref = *lhs->current_row_ref(); const IteratorRowRef& rhs_ref = *rhs->current_row_ref(); int cmp_res = UNLIKELY(lhs->compare_columns()) ? lhs_ref.compare(rhs_ref, lhs->compare_columns()) : lhs_ref.compare(rhs_ref, lhs->tablet_schema().num_key_columns()); if (cmp_res != 0) { return UNLIKELY(_is_reverse) ? cmp_res < 0 : cmp_res > 0; } if (_sequence != -1) { cmp_res = lhs_ref.block->get_by_position(_sequence).column->compare_at( lhs_ref.row_pos, rhs_ref.row_pos, *(rhs_ref.block->get_by_position(_sequence).column), -1); } // if row cursors equal, compare data version. // read data from higher version to lower version. // for UNIQUE_KEYS just read the highest version and no need agg_update. // for AGG_KEYS if a version is deleted, the lower version no need to agg_update bool lower = (cmp_res != 0) ? (cmp_res < 0) : (lhs->version() < rhs->version()); lower ? lhs->set_same(true) : rhs->set_same(true); return lower; } Status VCollectIterator::current_row(IteratorRowRef* ref) const { if (LIKELY(_inner_iter)) { *ref = *_inner_iter->current_row_ref(); if (ref->row_pos == -1) { return Status::Error(); } else { return Status::OK(); } } return Status::Error(); } Status VCollectIterator::next(IteratorRowRef* ref) { if (LIKELY(_inner_iter)) { return _inner_iter->next(ref); } else { return Status::Error(); } } Status VCollectIterator::next(Block* block) { if (LIKELY(_inner_iter)) { return _inner_iter->next(block); } else { return Status::Error(); } } VCollectIterator::Level0Iterator::Level0Iterator(RowsetReaderSharedPtr rs_reader, TabletReader* reader) : LevelIterator(reader), _rs_reader(rs_reader), _reader(reader) { DCHECK_EQ(RowsetTypePB::BETA_ROWSET, rs_reader->type()); } Status VCollectIterator::Level0Iterator::init(bool get_data_by_ref) { _get_data_by_ref = get_data_by_ref && _rs_reader->support_return_data_by_ref() && config::enable_storage_vectorization; if (!_get_data_by_ref) { _block = std::make_shared(_schema.create_block( _reader->_return_columns, _reader->_tablet_columns_convert_to_null_set)); } auto st = _refresh_current_row(); if (_get_data_by_ref && _block_view.size()) { _ref = _block_view[0]; } else { _ref = {_block, 0, false}; } return st; } // if is_first_child = true, return first row in block。Unique keys and agg keys will // read a line first and then start loop : // while (!eof) { // collect_iter->next(&_next_row); // } // so first child load first row and other child row_pos = -1 Status VCollectIterator::Level0Iterator::init_for_union(bool is_first_child, bool get_data_by_ref) { _get_data_by_ref = get_data_by_ref && _rs_reader->support_return_data_by_ref() && config::enable_storage_vectorization; if (!_get_data_by_ref) { _block = std::make_shared(_schema.create_block( _reader->_return_columns, _reader->_tablet_columns_convert_to_null_set)); } auto st = _refresh_current_row(); if (_get_data_by_ref && _block_view.size()) { if (is_first_child) { _ref = _block_view[0]; } else { _ref = _block_view[-1]; } } else { if (is_first_child) { _ref = {_block, 0, false}; } else { _ref = {_block, -1, false}; } } return st; } int64_t VCollectIterator::Level0Iterator::version() const { return _rs_reader->version().second; } Status VCollectIterator::Level0Iterator::_refresh_current_row() { do { if (!_is_empty() && _current_valid()) { return Status::OK(); } else { _reset(); auto res = _refresh(); if (!res.ok() && !res.is()) { return res; } if (res.is() && _is_empty()) { break; } if (UNLIKELY(_reader->_reader_context.record_rowids)) { RETURN_NOT_OK(_rs_reader->current_block_row_locations(&_block_row_locations)); } } } while (!_is_empty()); _ref.row_pos = -1; _current = -1; return Status::Error(); } Status VCollectIterator::Level0Iterator::next(IteratorRowRef* ref) { if (_get_data_by_ref) { _current++; } else { _ref.row_pos++; } RETURN_NOT_OK(_refresh_current_row()); if (_get_data_by_ref) { _ref = _block_view[_current]; } *ref = _ref; return Status::OK(); } Status VCollectIterator::Level0Iterator::next(Block* block) { CHECK(!_get_data_by_ref); if (_ref.row_pos <= 0 && _ref.block != nullptr && UNLIKELY(_ref.block->rows() > 0)) { block->swap(*_ref.block); _ref.reset(); return Status::OK(); } else { auto res = _rs_reader->next_block(block); if (!res.ok() && !res.is()) { return res; } if (res.is() && block->rows() == 0) { return Status::Error(); } if (UNLIKELY(_reader->_reader_context.record_rowids)) { RETURN_NOT_OK(_rs_reader->current_block_row_locations(&_block_row_locations)); } return Status::OK(); } } RowLocation VCollectIterator::Level0Iterator::current_row_location() { RowLocation& segment_row_id = _block_row_locations[_get_data_by_ref ? _current : _ref.row_pos]; return RowLocation(_rs_reader->rowset()->rowset_id(), segment_row_id.segment_id, segment_row_id.row_id); } Status VCollectIterator::Level0Iterator::current_block_row_locations( std::vector* block_row_locations) { block_row_locations->resize(_block_row_locations.size()); for (auto i = 0; i < _block_row_locations.size(); i++) { RowLocation& row_location = _block_row_locations[i]; (*block_row_locations)[i] = RowLocation(_rs_reader->rowset()->rowset_id(), row_location.segment_id, row_location.row_id); } return Status::OK(); } VCollectIterator::Level1Iterator::Level1Iterator( const std::list& children, TabletReader* reader, bool merge, bool is_reverse, bool skip_same) : LevelIterator(reader), _children(children), _reader(reader), _merge(merge), _is_reverse(is_reverse), _skip_same(skip_same) { _ref.reset(); _batch_size = reader->_batch_size; // !_merge means that data are in order, so we just reverse children to return data in reverse if (!_merge && _is_reverse) { _children.reverse(); } } VCollectIterator::Level1Iterator::~Level1Iterator() { for (auto child : _children) { if (child != nullptr) { delete child; child = nullptr; } } if (_heap) { while (!_heap->empty()) { auto child = _heap->top(); _heap->pop(); if (child) { delete child; } } } } // Read next row into *row. // Returns // OK when read successfully. // Status::Error() and set *row to nullptr when EOF is reached. // Others when error happens Status VCollectIterator::Level1Iterator::next(IteratorRowRef* ref) { if (UNLIKELY(_cur_child == nullptr)) { _ref.reset(); return Status::Error(); } if (_merge) { return _merge_next(ref); } else { return _normal_next(ref); } } // Read next block // Returns // OK when read successfully. // Status::Error() and set *row to nullptr when EOF is reached. // Others when error happens Status VCollectIterator::Level1Iterator::next(Block* block) { if (UNLIKELY(_cur_child == nullptr)) { return Status::Error(); } if (_merge) { return _merge_next(block); } else { return _normal_next(block); } } int64_t VCollectIterator::Level1Iterator::version() const { if (_cur_child != nullptr) { return _cur_child->version(); } return -1; } Status VCollectIterator::Level1Iterator::init(bool get_data_by_ref) { if (_children.empty()) { return Status::OK(); } // Only when there are multiple children that need to be merged if (_merge && _children.size() > 1) { auto sequence_loc = -1; for (int loc = 0; loc < _reader->_return_columns.size(); loc++) { if (_reader->_return_columns[loc] == _reader->_sequence_col_idx) { sequence_loc = loc; break; } } _heap.reset(new MergeHeap {LevelIteratorComparator(sequence_loc, _is_reverse)}); for (auto child : _children) { DCHECK(child != nullptr); //DCHECK(child->current_row().ok()); _heap->push(child); } _cur_child = _heap->top(); // Clear _children earlier to release any related references _children.clear(); } else { _merge = false; _heap.reset(nullptr); _cur_child = *_children.begin(); } _ref = *_cur_child->current_row_ref(); return Status::OK(); } Status VCollectIterator::Level1Iterator::_merge_next(IteratorRowRef* ref) { _heap->pop(); auto res = _cur_child->next(ref); if (LIKELY(res.ok())) { _heap->push(_cur_child); _cur_child = _heap->top(); } else if (res.is()) { // current child has been read, to read next delete _cur_child; if (!_heap->empty()) { _cur_child = _heap->top(); } else { _ref.reset(); _cur_child = nullptr; return Status::Error(); } } else { _ref.reset(); _cur_child = nullptr; LOG(WARNING) << "failed to get next from child, res=" << res; return res; } if (_skip_same && _cur_child->is_same()) { _reader->_merged_rows++; _cur_child->set_same(false); return _merge_next(ref); } _ref = *_cur_child->current_row_ref(); *ref = _ref; _cur_child->set_same(false); return Status::OK(); } Status VCollectIterator::Level1Iterator::_normal_next(IteratorRowRef* ref) { auto res = _cur_child->next(ref); if (LIKELY(res.ok())) { _ref = *ref; return Status::OK(); } else if (res.is()) { // current child has been read, to read next delete _cur_child; _children.pop_front(); if (!_children.empty()) { _cur_child = *(_children.begin()); return _normal_next(ref); } else { _cur_child = nullptr; return Status::Error(); } } else { _cur_child = nullptr; LOG(WARNING) << "failed to get next from child, res=" << res; return res; } } Status VCollectIterator::Level1Iterator::_merge_next(Block* block) { int target_block_row = 0; auto target_columns = block->mutate_columns(); size_t column_count = block->columns(); IteratorRowRef cur_row = _ref; IteratorRowRef pre_row_ref = _ref; // append extra columns (eg. MATCH pred result column) from src_block to block for (size_t i = block->columns(); i < cur_row.block->columns(); ++i) { block->insert(cur_row.block->get_by_position(i).clone_empty()); } if (UNLIKELY(_reader->_reader_context.record_rowids)) { _block_row_locations.resize(_batch_size); } int continuous_row_in_block = 0; do { if (UNLIKELY(_reader->_reader_context.record_rowids)) { _block_row_locations[target_block_row] = _cur_child->current_row_location(); } ++target_block_row; ++continuous_row_in_block; // cur block finished, copy before merge_next cause merge_next will // clear block column data if (pre_row_ref.row_pos + continuous_row_in_block == pre_row_ref.block->rows()) { const auto& src_block = pre_row_ref.block; for (size_t i = 0; i < column_count; ++i) { target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column), pre_row_ref.row_pos, continuous_row_in_block); } continuous_row_in_block = 0; pre_row_ref.reset(); } auto res = _merge_next(&cur_row); if (UNLIKELY(res.is())) { if (UNLIKELY(_reader->_reader_context.record_rowids)) { _block_row_locations.resize(target_block_row); } return res; } if (UNLIKELY(!res.ok())) { LOG(WARNING) << "next failed: " << res; return res; } if (target_block_row >= _batch_size) { if (continuous_row_in_block > 0) { const auto& src_block = pre_row_ref.block; for (size_t i = 0; i < column_count; ++i) { target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column), pre_row_ref.row_pos, continuous_row_in_block); } } return Status::OK(); } if (continuous_row_in_block == 0) { pre_row_ref = _ref; continue; } // copy row if meet a new block if (cur_row.block != pre_row_ref.block) { const auto& src_block = pre_row_ref.block; for (size_t i = 0; i < column_count; ++i) { target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column), pre_row_ref.row_pos, continuous_row_in_block); } continuous_row_in_block = 0; pre_row_ref = cur_row; } } while (true); return Status::OK(); } Status VCollectIterator::Level1Iterator::_normal_next(Block* block) { auto res = _cur_child->next(block); if (LIKELY(res.ok())) { return Status::OK(); } else if (res.is()) { // current child has been read, to read next delete _cur_child; _children.pop_front(); if (!_children.empty()) { _cur_child = *(_children.begin()); return _normal_next(block); } else { _cur_child = nullptr; return Status::Error(); } } else { _cur_child = nullptr; LOG(WARNING) << "failed to get next from child, res=" << res; return res; } } Status VCollectIterator::Level1Iterator::current_block_row_locations( std::vector* block_row_locations) { if (!_merge) { if (UNLIKELY(_cur_child == nullptr)) { block_row_locations->clear(); return Status::Error(); } return _cur_child->current_block_row_locations(block_row_locations); } else { DCHECK(_reader->_reader_context.record_rowids); *block_row_locations = _block_row_locations; return Status::OK(); } } } // namespace vectorized } // namespace doris