// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "runtime/data_stream_sender.h" #include #include #include #include #include "common/logging.h" #include "exprs/expr.h" #include "runtime/descriptors.h" #include "runtime/exec_env.h" #include "runtime/tuple_row.h" #include "runtime/row_batch.h" #include "runtime/raw_value.h" #include "runtime/runtime_state.h" #include "runtime/client_cache.h" #include "runtime/dpp_sink_internal.h" #include "runtime/mem_tracker.h" #include "util/debug_util.h" #include "util/network_util.h" #include "util/thrift_client.h" #include "util/thrift_util.h" #include "gen_cpp/Types_types.h" #include "gen_cpp/PaloInternalService_types.h" #include "gen_cpp/BackendService.h" #include "gen_cpp/internal_service.pb.h" #include "gen_cpp/palo_internal_service.pb.h" #include #include "service/brpc.h" #include "util/thrift_util.h" #include "util/brpc_stub_cache.h" #include "util/ref_count_closure.h" namespace doris { // A channel sends data asynchronously via calls to transmit_data // to a single destination ipaddress/node. // It has a fixed-capacity buffer and allows the caller either to add rows to // that buffer individually (AddRow()), or circumvent the buffer altogether and send // TRowBatches directly (SendBatch()). Either way, there can only be one in-flight RPC // at any one time (ie, sending will block if the most recent rpc hasn't finished, // which allows the receiver node to throttle the sender by withholding acks). // *Not* thread-safe. class DataStreamSender::Channel { public: // Create channel to send data to particular ipaddress/port/query/node // combination. buffer_size is specified in bytes and a soft limit on // how much tuple data is getting accumulated before being sent; it only applies // when data is added via add_row() and not sent directly via send_batch(). Channel(DataStreamSender* parent, const RowDescriptor& row_desc, const TNetworkAddress& brpc_dest, const TUniqueId& fragment_instance_id, PlanNodeId dest_node_id, int buffer_size, bool is_transfer_chain) : _parent(parent), _buffer_size(buffer_size), _row_desc(row_desc), _fragment_instance_id(fragment_instance_id), _dest_node_id(dest_node_id), _num_data_bytes_sent(0), _packet_seq(0), _need_close(false), _brpc_dest_addr(brpc_dest), _is_transfer_chain(is_transfer_chain) { } virtual ~Channel() { if (_closure != nullptr && _closure->unref()) { delete _closure; } // release this before request desctruct _brpc_request.release_finst_id(); } // Initialize channel. // Returns OK if successful, error indication otherwise. Status init(RuntimeState* state); // Copies a single row into this channel's output buffer and flushes buffer // if it reaches capacity. // Returns error status if any of the preceding rpcs failed, OK otherwise. Status add_row(TupleRow* row); // Asynchronously sends a row batch. // Returns the status of the most recently finished transmit_data // rpc (or OK if there wasn't one that hasn't been reported yet). // if batch is nullptr, send the eof packet Status send_batch(PRowBatch* batch, bool eos = false); // Flush buffered rows and close channel. // Returns error status if any of the preceding rpcs failed, OK otherwise. void close(RuntimeState* state); int64_t num_data_bytes_sent() const { return _num_data_bytes_sent; } PRowBatch* pb_batch() { return &_pb_batch; } private: inline Status _wait_last_brpc() { auto cntl = &_closure->cntl; brpc::Join(cntl->call_id()); if (cntl->Failed()) { LOG(WARNING) << "failed to send brpc batch, error=" << berror(cntl->ErrorCode()) << ", error_text=" << cntl->ErrorText(); return Status(TStatusCode::THRIFT_RPC_ERROR, "failed to send batch"); } return Status::OK; } private: // Serialize _batch into _thrift_batch and send via send_batch(). // Returns send_batch() status. Status send_current_batch(bool eos = false); Status close_internal(); DataStreamSender* _parent; int _buffer_size; const RowDescriptor& _row_desc; TUniqueId _fragment_instance_id; PlanNodeId _dest_node_id; // the number of TRowBatch.data bytes sent successfully int64_t _num_data_bytes_sent; int64_t _packet_seq; // we're accumulating rows into this batch boost::scoped_ptr _batch; bool _need_close; int _be_number; TNetworkAddress _brpc_dest_addr; // TODO(zc): initused for brpc PUniqueId _finst_id; PRowBatch _pb_batch; PTransmitDataParams _brpc_request; palo::PInternalService_Stub* _brpc_stub = nullptr; RefCountClosure* _closure = nullptr; int32_t _brpc_timeout_ms = 500; // whether the dest can be treated as consumption transfer chain. bool _is_transfer_chain; }; Status DataStreamSender::Channel::init(RuntimeState* state) { _be_number = state->be_number(); // TODO: figure out how to size _batch int capacity = std::max(1, _buffer_size / std::max(_row_desc.get_row_size(), 1)); _batch.reset(new RowBatch(_row_desc, capacity, _parent->_mem_tracker.get())); if (_brpc_dest_addr.hostname.empty()) { LOG(WARNING) << "there is no brpc destination address's hostname" ", maybe version is not compatible."; return Status("no brpc destination"); } // initialize brpc request _finst_id.set_hi(_fragment_instance_id.hi); _finst_id.set_lo(_fragment_instance_id.lo); _brpc_request.set_allocated_finst_id(&_finst_id); _brpc_request.set_node_id(_dest_node_id); _brpc_request.set_sender_id(_parent->_sender_id); _brpc_request.set_be_number(_be_number); _brpc_timeout_ms = std::min(3600, state->query_options().query_timeout) * 1000; _brpc_stub = state->exec_env()->brpc_stub_cache()->get_stub(_brpc_dest_addr); _need_close = true; return Status::OK; } Status DataStreamSender::Channel::send_batch(PRowBatch* batch, bool eos) { if (_closure == nullptr) { _closure = new RefCountClosure(); _closure->ref(); } else { RETURN_IF_ERROR(_wait_last_brpc()); _closure->cntl.Reset(); } VLOG_ROW << "Channel::send_batch() instance_id=" << _fragment_instance_id << " dest_node=" << _dest_node_id; if (eos && _is_transfer_chain) { auto consumption = _brpc_request.mutable_query_consumption(); _parent->_query_consumption.serialize(consumption); } _brpc_request.set_eos(eos); if (batch != nullptr) { _brpc_request.set_allocated_row_batch(batch); } _brpc_request.set_packet_seq(_packet_seq++); _closure->ref(); _closure->cntl.set_timeout_ms(_brpc_timeout_ms); _brpc_stub->transmit_data(&_closure->cntl, &_brpc_request, &_closure->result, _closure); if (batch != nullptr) { _brpc_request.release_row_batch(); } return Status::OK; } Status DataStreamSender::Channel::add_row(TupleRow* row) { int row_num = _batch->add_row(); if (row_num == RowBatch::INVALID_ROW_INDEX) { // _batch is full, let's send it; but first wait for an ongoing // transmission to finish before modifying _thrift_batch RETURN_IF_ERROR(send_current_batch()); row_num = _batch->add_row(); DCHECK_NE(row_num, RowBatch::INVALID_ROW_INDEX); } TupleRow* dest = _batch->get_row(row_num); _batch->copy_row(row, dest); const std::vector& descs = _row_desc.tuple_descriptors(); for (int i = 0; i < descs.size(); ++i) { if (UNLIKELY(row->get_tuple(i) == NULL)) { dest->set_tuple(i, NULL); } else { dest->set_tuple(i, row->get_tuple(i)->deep_copy(*descs[i], _batch->tuple_data_pool())); } } _batch->commit_last_row(); return Status::OK; } Status DataStreamSender::Channel::send_current_batch(bool eos) { { SCOPED_TIMER(_parent->_serialize_batch_timer); int uncompressed_bytes = _batch->serialize(&_pb_batch); COUNTER_UPDATE(_parent->_bytes_sent_counter, RowBatch::get_batch_size(_pb_batch)); COUNTER_UPDATE(_parent->_uncompressed_bytes_counter, uncompressed_bytes); } _batch->reset(); RETURN_IF_ERROR(send_batch(&_pb_batch, eos)); return Status::OK; } Status DataStreamSender::Channel::close_internal() { if (!_need_close) { return Status::OK; } VLOG_RPC << "Channel::close() instance_id=" << _fragment_instance_id << " dest_node=" << _dest_node_id << " #rows= " << ((_batch == nullptr) ? 0 : _batch->num_rows()); if (_batch != NULL && _batch->num_rows() > 0) { RETURN_IF_ERROR(send_current_batch(true)); } else { RETURN_IF_ERROR(send_batch(nullptr, true)); } RETURN_IF_ERROR(_wait_last_brpc()); _need_close = false; return Status::OK; } void DataStreamSender::Channel::close(RuntimeState* state) { state->log_error(close_internal().get_error_msg()); _batch.reset(); } DataStreamSender::DataStreamSender( ObjectPool* pool, int sender_id, const RowDescriptor& row_desc, const TDataStreamSink& sink, const std::vector& destinations, int per_channel_buffer_size) : _sender_id(sender_id), _pool(pool), _row_desc(row_desc), _current_channel_idx(0), _part_type(sink.output_partition.type), _ignore_not_found(sink.__isset.ignore_not_found ? sink.ignore_not_found : true), _current_pb_batch(&_pb_batch1), _profile(NULL), _serialize_batch_timer(NULL), _thrift_transmit_timer(NULL), _bytes_sent_counter(NULL), _dest_node_id(sink.dest_node_id) { DCHECK_GT(destinations.size(), 0); DCHECK(sink.output_partition.type == TPartitionType::UNPARTITIONED || sink.output_partition.type == TPartitionType::HASH_PARTITIONED || sink.output_partition.type == TPartitionType::RANDOM || sink.output_partition.type == TPartitionType::RANGE_PARTITIONED); // TODO: use something like google3's linked_ptr here (scoped_ptr isn't copyable) for (int i = 0; i < destinations.size(); ++i) { bool is_transfer_chain = false; if (destinations[i].__isset.is_transfer_chain) { is_transfer_chain = destinations[i].is_transfer_chain; } _channel_shared_ptrs.emplace_back( new Channel(this, row_desc, destinations[i].brpc_server, destinations[i].fragment_instance_id, sink.dest_node_id, per_channel_buffer_size, is_transfer_chain)); _channels.push_back(_channel_shared_ptrs[i].get()); } } // We use the ParttitionRange to compare here. It should not be a member function of PartitionInfo // class becaurce there are some other member in it. static bool compare_part_use_range(const PartitionInfo* v1, const PartitionInfo* v2) { return v1->range() < v2->range(); } Status DataStreamSender::init(const TDataSink& tsink) { RETURN_IF_ERROR(DataSink::init(tsink)); const TDataStreamSink& t_stream_sink = tsink.stream_sink; if (_part_type == TPartitionType::HASH_PARTITIONED) { RETURN_IF_ERROR(Expr::create_expr_trees( _pool, t_stream_sink.output_partition.partition_exprs, &_partition_expr_ctxs)); } else if (_part_type == TPartitionType::RANGE_PARTITIONED) { // Range partition // Partition Exprs RETURN_IF_ERROR(Expr::create_expr_trees( _pool, t_stream_sink.output_partition.partition_exprs, &_partition_expr_ctxs)); // Partition infos int num_parts = t_stream_sink.output_partition.partition_infos.size(); if (num_parts == 0) { return Status("Empty partition info."); } for (int i = 0; i < num_parts; ++i) { PartitionInfo* info = _pool->add(new PartitionInfo()); RETURN_IF_ERROR(PartitionInfo::from_thrift( _pool, t_stream_sink.output_partition.partition_infos[i], info)); _partition_infos.push_back(info); } // partitions should be in ascending order std::sort(_partition_infos.begin(), _partition_infos.end(), compare_part_use_range); } else { } return Status::OK; } Status DataStreamSender::prepare(RuntimeState* state) { RETURN_IF_ERROR(DataSink::prepare(state)); _state = state; std::stringstream title; title << "DataStreamSender (dst_id=" << _dest_node_id << ")"; _profile = _pool->add(new RuntimeProfile(_pool, title.str())); SCOPED_TIMER(_profile->total_time_counter()); _mem_tracker.reset( new MemTracker(-1, "DataStreamSender", state->instance_mem_tracker())); if (_part_type == TPartitionType::UNPARTITIONED || _part_type == TPartitionType::RANDOM) { // Randomize the order we open/transmit to channels to avoid thundering herd problems. srand(reinterpret_cast(this)); random_shuffle(_channels.begin(), _channels.end()); } else if (_part_type == TPartitionType::HASH_PARTITIONED) { RETURN_IF_ERROR(Expr::prepare( _partition_expr_ctxs, state, _row_desc, _expr_mem_tracker.get())); } else { RETURN_IF_ERROR(Expr::prepare( _partition_expr_ctxs, state, _row_desc, _expr_mem_tracker.get())); for (auto iter : _partition_infos) { RETURN_IF_ERROR(iter->prepare(state, _row_desc, _expr_mem_tracker.get())); } } _bytes_sent_counter = ADD_COUNTER(profile(), "BytesSent", TUnit::BYTES); _uncompressed_bytes_counter = ADD_COUNTER(profile(), "UncompressedRowBatchSize", TUnit::BYTES); _ignore_rows = ADD_COUNTER(profile(), "IgnoreRows", TUnit::UNIT); _serialize_batch_timer = ADD_TIMER(profile(), "SerializeBatchTime"); _thrift_transmit_timer = ADD_TIMER(profile(), "ThriftTransmitTime(*)"); _network_throughput = profile()->add_derived_counter("NetworkThroughput(*)", TUnit::BYTES_PER_SECOND, boost::bind(&RuntimeProfile::units_per_second, _bytes_sent_counter, _thrift_transmit_timer), ""); _overall_throughput = profile()->add_derived_counter("OverallThroughput", TUnit::BYTES_PER_SECOND, boost::bind(&RuntimeProfile::units_per_second, _bytes_sent_counter, profile()->total_time_counter()), ""); for (int i = 0; i < _channels.size(); ++i) { RETURN_IF_ERROR(_channels[i]->init(state)); } return Status::OK; } DataStreamSender::~DataStreamSender() { // TODO: check that sender was either already closed() or there was an error // on some channel _channel_shared_ptrs.clear(); } Status DataStreamSender::open(RuntimeState* state) { DCHECK(state != NULL); RETURN_IF_ERROR(Expr::open(_partition_expr_ctxs, state)); for (auto iter : _partition_infos) { RETURN_IF_ERROR(iter->open(state)); } return Status::OK; } Status DataStreamSender::send(RuntimeState* state, RowBatch* batch) { SCOPED_TIMER(_profile->total_time_counter()); // Unpartition or _channel size if (_part_type == TPartitionType::UNPARTITIONED || _channels.size() == 1) { RETURN_IF_ERROR(serialize_batch(batch, _current_pb_batch, _channels.size())); for (auto channel : _channels) { RETURN_IF_ERROR(channel->send_batch(_current_pb_batch)); } _current_pb_batch = (_current_pb_batch == &_pb_batch1 ? &_pb_batch2 : &_pb_batch1); } else if (_part_type == TPartitionType::RANDOM) { // Round-robin batches among channels. Wait for the current channel to finish its // rpc before overwriting its batch. Channel* current_channel = _channels[_current_channel_idx]; RETURN_IF_ERROR(serialize_batch(batch, current_channel->pb_batch())); RETURN_IF_ERROR(current_channel->send_batch(current_channel->pb_batch())); _current_channel_idx = (_current_channel_idx + 1) % _channels.size(); } else if (_part_type == TPartitionType::HASH_PARTITIONED) { // hash-partition batch's rows across channels int num_channels = _channels.size(); for (int i = 0; i < batch->num_rows(); ++i) { TupleRow* row = batch->get_row(i); size_t hash_val = 0; for (auto ctx : _partition_expr_ctxs) { void* partition_val = ctx->get_value(row); // We can't use the crc hash function here because it does not result // in uncorrelated hashes with different seeds. Instead we must use // fvn hash. // TODO: fix crc hash/GetHashValue() hash_val = RawValue::get_hash_value_fvn( partition_val, ctx->root()->type(), hash_val); } RETURN_IF_ERROR(_channels[hash_val % num_channels]->add_row(row)); } } else { // Range partition int num_channels = _channels.size(); int ignore_rows = 0; for (int i = 0; i < batch->num_rows(); ++i) { TupleRow* row = batch->get_row(i); size_t hash_val = 0; bool ignore = false; RETURN_IF_ERROR(compute_range_part_code(state, row, &hash_val, &ignore)); if (ignore) { // skip this row ignore_rows++; continue; } RETURN_IF_ERROR(_channels[hash_val % num_channels]->add_row(row)); } COUNTER_UPDATE(_ignore_rows, ignore_rows); } return Status::OK; } int DataStreamSender::binary_find_partition(const PartRangeKey& key) const { int low = 0; int high = _partition_infos.size() - 1; VLOG_ROW << "range key: " << key.debug_string() << std::endl; while (low <= high) { int mid = low + (high - low) / 2; int cmp = _partition_infos[mid]->range().compare_key(key); if (cmp == 0) { return mid; } else if (cmp < 0) { // current < partition[mid] low = mid + 1; } else { high = mid - 1; } } return -1; } Status DataStreamSender::find_partition( RuntimeState* state, TupleRow* row, PartitionInfo** info, bool* ignore) { if (_partition_expr_ctxs.size() == 0) { *info = _partition_infos[0]; return Status::OK; } else { *ignore = false; // use binary search to get the right partition. ExprContext* ctx = _partition_expr_ctxs[0]; void* partition_val = ctx->get_value(row); // construct a PartRangeKey PartRangeKey tmpPartKey; if (NULL != partition_val) { RETURN_IF_ERROR(PartRangeKey::from_value( ctx->root()->type().type, partition_val, &tmpPartKey)); } else { tmpPartKey = PartRangeKey::neg_infinite(); } int part_index = binary_find_partition(tmpPartKey); if (part_index < 0) { if (_ignore_not_found) { // TODO(zc): add counter to compute its std::stringstream error_log; error_log << "there is no corresponding partition for this key: "; ctx->print_value(row, &error_log); LOG(INFO) << error_log.str(); *ignore = true; return Status::OK; } else { std::stringstream error_log; error_log << "there is no corresponding partition for this key: "; ctx->print_value(row, &error_log); return Status(error_log.str()); } } *info = _partition_infos[part_index]; } return Status::OK; } Status DataStreamSender::process_distribute( RuntimeState* state, TupleRow* row, const PartitionInfo* part, size_t* code) { uint32_t hash_val = 0; for (auto& ctx: part->distributed_expr_ctxs()) { void* partition_val = ctx->get_value(row); if (partition_val != NULL) { hash_val = RawValue::zlib_crc32(partition_val, ctx->root()->type(), hash_val); } else { //NULL is treat as 0 when hash static const int INT_VALUE = 0; static const TypeDescriptor INT_TYPE(TYPE_INT); hash_val = RawValue::zlib_crc32(&INT_VALUE, INT_TYPE, hash_val); } } hash_val %= part->distributed_bucket(); int64_t part_id = part->id(); *code = RawValue::get_hash_value_fvn(&part_id, TypeDescriptor(TYPE_BIGINT), hash_val); return Status::OK; } Status DataStreamSender::compute_range_part_code( RuntimeState* state, TupleRow* row, size_t* hash_value, bool* ignore) { // process partition PartitionInfo* part = nullptr; RETURN_IF_ERROR(find_partition(state, row, &part, ignore)); if (*ignore) { return Status::OK; } // process distribute RETURN_IF_ERROR(process_distribute(state, row, part, hash_value)); return Status::OK; } Status DataStreamSender::close(RuntimeState* state, Status exec_status) { // TODO: only close channels that didn't have any errors for (int i = 0; i < _channels.size(); ++i) { _channels[i]->close(state); } for (auto iter : _partition_infos) { RETURN_IF_ERROR(iter->close(state)); } Expr::close(_partition_expr_ctxs, state); return Status::OK; } template Status DataStreamSender::serialize_batch(RowBatch* src, T* dest, int num_receivers) { VLOG_ROW << "serializing " << src->num_rows() << " rows"; { // TODO(zc) // SCOPED_TIMER(_profile->total_time_counter()); SCOPED_TIMER(_serialize_batch_timer); // TODO(zc) // RETURN_IF_ERROR(src->serialize(dest)); int uncompressed_bytes = src->serialize(dest); int bytes = RowBatch::get_batch_size(*dest); // TODO(zc) // int uncompressed_bytes = bytes - dest->tuple_data.size() + dest->uncompressed_size; // The size output_batch would be if we didn't compress tuple_data (will be equal to // actual batch size if tuple_data isn't compressed) COUNTER_UPDATE(_bytes_sent_counter, bytes * num_receivers); COUNTER_UPDATE(_uncompressed_bytes_counter, uncompressed_bytes * num_receivers); } return Status::OK; } int64_t DataStreamSender::get_num_data_bytes_sent() const { // TODO: do we need synchronization here or are reads & writes to 8-byte ints // atomic? int64_t result = 0; for (int i = 0; i < _channels.size(); ++i) { result += _channels[i]->num_data_bytes_sent(); } return result; } }