// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "util/runtime_profile.h" #include #include #include #include #include #include "common/config.h" #include "common/object_pool.h" #include "util/container_util.hpp" #include "util/cpu_info.h" #include "util/debug_util.h" #include "util/monotime.h" #include "util/pretty_printer.h" #include "util/thrift_util.h" #include "util/url_coding.h" namespace doris { // Thread counters name static const std::string THREAD_TOTAL_TIME = "TotalWallClockTime"; static const std::string THREAD_USER_TIME = "UserTime"; static const std::string THREAD_SYS_TIME = "SysTime"; static const std::string THREAD_VOLUNTARY_CONTEXT_SWITCHES = "VoluntaryContextSwitches"; static const std::string THREAD_INVOLUNTARY_CONTEXT_SWITCHES = "InvoluntaryContextSwitches"; // The root counter name for all top level counters. static const std::string ROOT_COUNTER = ""; RuntimeProfile::PeriodicCounterUpdateState RuntimeProfile::_s_periodic_counter_update_state; // TODO: we do not use the param pool should we del the param ObjectPool RuntimeProfile::RuntimeProfile(ObjectPool* pool, const std::string& name, bool is_averaged_profile) : _pool(new ObjectPool()), _own_pool(false), _name(name), _metadata(-1), _is_averaged_profile(is_averaged_profile), _counter_total_time(TUnit::TIME_NS, 0), _local_time_percent(0) { _counter_map["TotalTime"] = &_counter_total_time; } RuntimeProfile::~RuntimeProfile() { std::map::const_iterator iter; for (iter = _counter_map.begin(); iter != _counter_map.end(); ++iter) { stop_rate_counters_updates(iter->second); stop_sampling_counters_updates(iter->second); } std::set*>::const_iterator buckets_iter; for (buckets_iter = _bucketing_counters.begin(); buckets_iter != _bucketing_counters.end(); ++buckets_iter) { // This is just a clean up. No need to perform conversion. Also, the underlying // counters might be gone already. stop_bucketing_counters_updates(*buckets_iter, false); } } RuntimeProfile* RuntimeProfile::create_from_thrift(ObjectPool* pool, const TRuntimeProfileTree& profiles) { if (profiles.nodes.size() == 0) { return NULL; } int idx = 0; return RuntimeProfile::create_from_thrift(pool, profiles.nodes, &idx); } RuntimeProfile* RuntimeProfile::create_from_thrift(ObjectPool* pool, const std::vector& nodes, int* idx) { DCHECK_LT(*idx, nodes.size()); const TRuntimeProfileNode& node = nodes[*idx]; RuntimeProfile* profile = pool->add(new RuntimeProfile(pool, node.name)); profile->_metadata = node.metadata; for (int i = 0; i < node.counters.size(); ++i) { const TCounter& counter = node.counters[i]; profile->_counter_map[counter.name] = pool->add(new Counter(counter.type, counter.value)); } profile->_child_counter_map = node.child_counters_map; profile->_info_strings = node.info_strings; profile->_info_strings_display_order = node.info_strings_display_order; ++*idx; for (int i = 0; i < node.num_children; ++i) { profile->add_child(RuntimeProfile::create_from_thrift(pool, nodes, idx), false, NULL); } return profile; } void RuntimeProfile::merge(RuntimeProfile* other) { DCHECK(other != NULL); // Merge this level { CounterMap::iterator dst_iter; CounterMap::const_iterator src_iter; boost::lock_guard l(_counter_map_lock); boost::lock_guard m(other->_counter_map_lock); for (src_iter = other->_counter_map.begin(); src_iter != other->_counter_map.end(); ++src_iter) { dst_iter = _counter_map.find(src_iter->first); if (dst_iter == _counter_map.end()) { _counter_map[src_iter->first] = _pool->add( new Counter(src_iter->second->type(), src_iter->second->value())); } else { DCHECK(dst_iter->second->type() == src_iter->second->type()); if (dst_iter->second->type() == TUnit::DOUBLE_VALUE) { double new_val = dst_iter->second->double_value() + src_iter->second->double_value(); dst_iter->second->set(new_val); } else { dst_iter->second->update(src_iter->second->value()); } } } ChildCounterMap::const_iterator child_counter_src_itr; for (child_counter_src_itr = other->_child_counter_map.begin(); child_counter_src_itr != other->_child_counter_map.end(); ++child_counter_src_itr) { std::set* child_counters = find_or_insert( &_child_counter_map, child_counter_src_itr->first, std::set()); child_counters->insert(child_counter_src_itr->second.begin(), child_counter_src_itr->second.end()); } } { boost::lock_guard l(_children_lock); boost::lock_guard m(other->_children_lock); // Recursively merge children with matching names for (int i = 0; i < other->_children.size(); ++i) { RuntimeProfile* other_child = other->_children[i].first; ChildMap::iterator j = _child_map.find(other_child->_name); RuntimeProfile* child = NULL; if (j != _child_map.end()) { child = j->second; } else { child = _pool->add(new RuntimeProfile(_pool.get(), other_child->_name)); child->_local_time_percent = other_child->_local_time_percent; child->_metadata = other_child->_metadata; bool indent_other_child = other->_children[i].second; _child_map[child->_name] = child; _children.push_back(std::make_pair(child, indent_other_child)); } child->merge(other_child); } } } void RuntimeProfile::update(const TRuntimeProfileTree& thrift_profile) { int idx = 0; update(thrift_profile.nodes, &idx); DCHECK_EQ(idx, thrift_profile.nodes.size()); } void RuntimeProfile::update(const std::vector& nodes, int* idx) { DCHECK_LT(*idx, nodes.size()); const TRuntimeProfileNode& node = nodes[*idx]; { boost::lock_guard l(_counter_map_lock); // update this level std::map::iterator dst_iter; for (int i = 0; i < node.counters.size(); ++i) { const TCounter& tcounter = node.counters[i]; CounterMap::iterator j = _counter_map.find(tcounter.name); if (j == _counter_map.end()) { _counter_map[tcounter.name] = _pool->add(new Counter(tcounter.type, tcounter.value)); } else { if (j->second->type() != tcounter.type) { LOG(ERROR) << "Cannot update counters with the same name (" << j->first << ") but different types."; } else { j->second->set(tcounter.value); } } } ChildCounterMap::const_iterator child_counter_src_itr; for (child_counter_src_itr = node.child_counters_map.begin(); child_counter_src_itr != node.child_counters_map.end(); ++child_counter_src_itr) { std::set* child_counters = find_or_insert( &_child_counter_map, child_counter_src_itr->first, std::set()); child_counters->insert(child_counter_src_itr->second.begin(), child_counter_src_itr->second.end()); } } { boost::lock_guard l(_info_strings_lock); const InfoStrings& info_strings = node.info_strings; BOOST_FOREACH (const std::string& key, node.info_strings_display_order) { // Look for existing info strings and update in place. If there // are new strings, add them to the end of the display order. // TODO: Is nodes.info_strings always a superset of // _info_strings? If so, can just copy the display order. InfoStrings::const_iterator it = info_strings.find(key); DCHECK(it != info_strings.end()); InfoStrings::iterator existing = _info_strings.find(key); if (existing == _info_strings.end()) { _info_strings.insert(std::make_pair(key, it->second)); _info_strings_display_order.push_back(key); } else { _info_strings[key] = it->second; } } } ++*idx; { boost::lock_guard l(_children_lock); // update children with matching names; create new ones if they don't match for (int i = 0; i < node.num_children; ++i) { const TRuntimeProfileNode& tchild = nodes[*idx]; ChildMap::iterator j = _child_map.find(tchild.name); RuntimeProfile* child = NULL; if (j != _child_map.end()) { child = j->second; } else { child = _pool->add(new RuntimeProfile(_pool.get(), tchild.name)); child->_metadata = tchild.metadata; _child_map[tchild.name] = child; _children.push_back(std::make_pair(child, tchild.indent)); } child->update(nodes, idx); } } } void RuntimeProfile::divide(int n) { DCHECK_GT(n, 0); std::map::iterator iter; { boost::lock_guard l(_counter_map_lock); for (iter = _counter_map.begin(); iter != _counter_map.end(); ++iter) { if (iter->second->type() == TUnit::DOUBLE_VALUE) { iter->second->set(iter->second->double_value() / n); } else { int64_t value = iter->second->_value.load(); value = value / n; iter->second->_value.store(value); } } } { boost::lock_guard l(_children_lock); for (ChildMap::iterator i = _child_map.begin(); i != _child_map.end(); ++i) { i->second->divide(n); } } } void RuntimeProfile::compute_time_in_profile() { compute_time_in_profile(total_time_counter()->value()); } void RuntimeProfile::compute_time_in_profile(int64_t total) { if (total == 0) { return; } // Add all the total times in all the children int64_t total_child_time = 0; boost::lock_guard l(_children_lock); for (int i = 0; i < _children.size(); ++i) { total_child_time += _children[i].first->total_time_counter()->value(); } int64_t local_time = total_time_counter()->value() - total_child_time; // Counters have some margin, set to 0 if it was negative. local_time = std::max(0L, local_time); _local_time_percent = static_cast(local_time) / total; _local_time_percent = std::min(1.0, _local_time_percent) * 100; // Recurse on children for (int i = 0; i < _children.size(); ++i) { _children[i].first->compute_time_in_profile(total); } } RuntimeProfile* RuntimeProfile::create_child(const std::string& name, bool indent, bool prepend) { boost::lock_guard l(_children_lock); DCHECK(_child_map.find(name) == _child_map.end()); RuntimeProfile* child = _pool->add(new RuntimeProfile(_pool.get(), name)); if (_children.empty()) { add_child_unlock(child, indent, NULL); } else { ChildVector::iterator pos = prepend ? _children.begin() : _children.end(); add_child_unlock(child, indent, (*pos).first); } return child; } void RuntimeProfile::add_child_unlock(RuntimeProfile* child, bool indent, RuntimeProfile* loc) { DCHECK(child != NULL); _child_map[child->_name] = child; if (loc == NULL) { _children.push_back(std::make_pair(child, indent)); } else { for (ChildVector::iterator it = _children.begin(); it != _children.end(); ++it) { if (it->first == loc) { _children.insert(++it, std::make_pair(child, indent)); return; } } DCHECK(false) << "Invalid loc"; } } void RuntimeProfile::add_child(RuntimeProfile* child, bool indent, RuntimeProfile* loc) { boost::lock_guard l(_children_lock); add_child_unlock(child, indent, loc); } void RuntimeProfile::get_children(std::vector* children) { children->clear(); boost::lock_guard l(_children_lock); for (ChildMap::iterator i = _child_map.begin(); i != _child_map.end(); ++i) { children->push_back(i->second); } } void RuntimeProfile::get_all_children(std::vector* children) { boost::lock_guard l(_children_lock); for (ChildMap::iterator i = _child_map.begin(); i != _child_map.end(); ++i) { children->push_back(i->second); i->second->get_all_children(children); } } void RuntimeProfile::add_info_string(const std::string& key, const std::string& value) { boost::lock_guard l(_info_strings_lock); InfoStrings::iterator it = _info_strings.find(key); if (it == _info_strings.end()) { _info_strings.insert(std::make_pair(key, value)); _info_strings_display_order.push_back(key); } else { it->second = value; } } const std::string* RuntimeProfile::get_info_string(const std::string& key) { boost::lock_guard l(_info_strings_lock); InfoStrings::const_iterator it = _info_strings.find(key); if (it == _info_strings.end()) { return NULL; } return &it->second; } #define ADD_COUNTER_IMPL(NAME, T) \ RuntimeProfile::T* RuntimeProfile::NAME(const std::string& name, TUnit::type unit, \ const std::string& parent_counter_name) { \ DCHECK_EQ(_is_averaged_profile, false); \ boost::lock_guard l(_counter_map_lock); \ if (_counter_map.find(name) != _counter_map.end()) { \ return reinterpret_cast(_counter_map[name]); \ } \ DCHECK(parent_counter_name == ROOT_COUNTER || \ _counter_map.find(parent_counter_name) != _counter_map.end()); \ T* counter = _pool->add(new T(unit)); \ _counter_map[name] = counter; \ std::set* child_counters = \ find_or_insert(&_child_counter_map, parent_counter_name, std::set()); \ child_counters->insert(name); \ return counter; \ } //ADD_COUNTER_IMPL(AddCounter, Counter); ADD_COUNTER_IMPL(AddHighWaterMarkCounter, HighWaterMarkCounter); //ADD_COUNTER_IMPL(AddConcurrentTimerCounter, ConcurrentTimerCounter); RuntimeProfile::Counter* RuntimeProfile::add_counter(const std::string& name, TUnit::type type, const std::string& parent_counter_name) { boost::lock_guard l(_counter_map_lock); if (_counter_map.find(name) != _counter_map.end()) { // TODO: should we make sure that we don't return existing derived counters? return _counter_map[name]; } DCHECK(parent_counter_name == ROOT_COUNTER || _counter_map.find(parent_counter_name) != _counter_map.end()); Counter* counter = _pool->add(new Counter(type, 0)); _counter_map[name] = counter; std::set* child_counters = find_or_insert(&_child_counter_map, parent_counter_name, std::set()); child_counters->insert(name); return counter; } RuntimeProfile::DerivedCounter* RuntimeProfile::add_derived_counter( const std::string& name, TUnit::type type, const DerivedCounterFunction& counter_fn, const std::string& parent_counter_name) { boost::lock_guard l(_counter_map_lock); if (_counter_map.find(name) != _counter_map.end()) { return NULL; } DerivedCounter* counter = _pool->add(new DerivedCounter(type, counter_fn)); _counter_map[name] = counter; std::set* child_counters = find_or_insert(&_child_counter_map, parent_counter_name, std::set()); child_counters->insert(name); return counter; } RuntimeProfile::ThreadCounters* RuntimeProfile::add_thread_counters(const std::string& prefix) { ThreadCounters* counter = _pool->add(new ThreadCounters()); counter->_total_time = add_counter(prefix + THREAD_TOTAL_TIME, TUnit::TIME_NS); counter->_user_time = add_counter(prefix + THREAD_USER_TIME, TUnit::TIME_NS, prefix + THREAD_TOTAL_TIME); counter->_sys_time = add_counter(prefix + THREAD_SYS_TIME, TUnit::TIME_NS, prefix + THREAD_TOTAL_TIME); counter->_voluntary_context_switches = add_counter(prefix + THREAD_VOLUNTARY_CONTEXT_SWITCHES, TUnit::UNIT); counter->_involuntary_context_switches = add_counter(prefix + THREAD_INVOLUNTARY_CONTEXT_SWITCHES, TUnit::UNIT); return counter; } RuntimeProfile::Counter* RuntimeProfile::get_counter(const std::string& name) { boost::lock_guard l(_counter_map_lock); if (_counter_map.find(name) != _counter_map.end()) { return _counter_map[name]; } return NULL; } void RuntimeProfile::get_counters(const std::string& name, std::vector* counters) { Counter* c = get_counter(name); if (c != NULL) { counters->push_back(c); } boost::lock_guard l(_children_lock); for (int i = 0; i < _children.size(); ++i) { _children[i].first->get_counters(name, counters); } } // Print the profile: // 1. Profile Name // 2. Info Strings // 3. Counters // 4. Children void RuntimeProfile::pretty_print(std::ostream* s, const std::string& prefix) const { std::ostream& stream = *s; // create copy of _counter_map and _child_counter_map so we don't need to hold lock // while we call value() on the counters (some of those might be DerivedCounters) CounterMap counter_map; ChildCounterMap child_counter_map; { boost::lock_guard l(_counter_map_lock); counter_map = _counter_map; child_counter_map = _child_counter_map; } std::map::const_iterator total_time = counter_map.find("TotalTime"); DCHECK(total_time != counter_map.end()); stream.flags(std::ios::fixed); stream << prefix << _name << ":"; if (total_time->second->value() != 0) { stream << "(Active: " << PrettyPrinter::print(total_time->second->value(), total_time->second->type()) << ", non-child: " << std::setprecision(2) << _local_time_percent << "%)"; } stream << std::endl; { boost::lock_guard l(_info_strings_lock); BOOST_FOREACH (const std::string& key, _info_strings_display_order) { stream << prefix << " - " << key << ": " << _info_strings.find(key)->second << std::endl; } } { // Print all the event timers as the following: // Timeline: 2s719ms // - Event 1: 6.522us (6.522us) // - Event 2: 2s288ms (2s288ms) // - Event 3: 2s410ms (121.138ms) // The times in parentheses are the time elapsed since the last event. boost::lock_guard l(_event_sequences_lock); BOOST_FOREACH (const EventSequenceMap::value_type& event_sequence, _event_sequence_map) { stream << prefix << " " << event_sequence.first << ": " << PrettyPrinter::print(event_sequence.second->elapsed_time(), TUnit::TIME_NS) << std::endl; int64_t last = 0L; BOOST_FOREACH (const EventSequence::Event& event, event_sequence.second->events()) { stream << prefix << " - " << event.first << ": " << PrettyPrinter::print(event.second, TUnit::TIME_NS) << " (" << PrettyPrinter::print(event.second - last, TUnit::TIME_NS) << ")" << std::endl; last = event.second; } } } RuntimeProfile::print_child_counters(prefix, ROOT_COUNTER, counter_map, child_counter_map, s); // create copy of _children so we don't need to hold lock while we call // pretty_print() on the children ChildVector children; { boost::lock_guard l(_children_lock); children = _children; } for (int i = 0; i < children.size(); ++i) { RuntimeProfile* profile = children[i].first; bool indent = children[i].second; profile->pretty_print(s, prefix + (indent ? " " : "")); } } void RuntimeProfile::to_thrift(TRuntimeProfileTree* tree) { tree->nodes.clear(); to_thrift(&tree->nodes); } void RuntimeProfile::to_thrift(std::vector* nodes) { nodes->reserve(nodes->size() + _children.size()); int index = nodes->size(); nodes->push_back(TRuntimeProfileNode()); TRuntimeProfileNode& node = (*nodes)[index]; node.name = _name; node.num_children = _children.size(); node.metadata = _metadata; node.indent = true; CounterMap counter_map; { boost::lock_guard l(_counter_map_lock); counter_map = _counter_map; node.child_counters_map = _child_counter_map; } for (std::map::const_iterator iter = counter_map.begin(); iter != counter_map.end(); ++iter) { TCounter counter; counter.name = iter->first; counter.value = iter->second->value(); counter.type = iter->second->type(); node.counters.push_back(counter); } { boost::lock_guard l(_info_strings_lock); node.info_strings = _info_strings; node.info_strings_display_order = _info_strings_display_order; } ChildVector children; { boost::lock_guard l(_children_lock); children = _children; } for (int i = 0; i < children.size(); ++i) { int child_idx = nodes->size(); children[i].first->to_thrift(nodes); // fix up indentation flag (*nodes)[child_idx].indent = children[i].second; } } int64_t RuntimeProfile::units_per_second(const RuntimeProfile::Counter* total_counter, const RuntimeProfile::Counter* timer) { DCHECK(total_counter->type() == TUnit::BYTES || total_counter->type() == TUnit::UNIT); DCHECK(timer->type() == TUnit::TIME_NS); if (timer->value() == 0) { return 0; } double secs = static_cast(timer->value()) / 1000.0 / 1000.0 / 1000.0; return total_counter->value() / secs; } int64_t RuntimeProfile::counter_sum(const std::vector* counters) { int64_t value = 0; for (int i = 0; i < counters->size(); ++i) { value += (*counters)[i]->value(); } return value; } RuntimeProfile::Counter* RuntimeProfile::add_rate_counter(const std::string& name, Counter* src_counter) { TUnit::type dst_type; switch (src_counter->type()) { case TUnit::BYTES: dst_type = TUnit::BYTES_PER_SECOND; break; case TUnit::UNIT: dst_type = TUnit::UNIT_PER_SECOND; break; default: DCHECK(false) << "Unsupported src counter type: " << src_counter->type(); return NULL; } Counter* dst_counter = add_counter(name, dst_type); register_periodic_counter(src_counter, NULL, dst_counter, RATE_COUNTER); return dst_counter; } RuntimeProfile::Counter* RuntimeProfile::add_rate_counter(const std::string& name, SampleFn fn, TUnit::type dst_type) { Counter* dst_counter = add_counter(name, dst_type); register_periodic_counter(NULL, fn, dst_counter, RATE_COUNTER); return dst_counter; } RuntimeProfile::Counter* RuntimeProfile::add_sampling_counter(const std::string& name, Counter* src_counter) { DCHECK(src_counter->type() == TUnit::UNIT); Counter* dst_counter = add_counter(name, TUnit::DOUBLE_VALUE); register_periodic_counter(src_counter, NULL, dst_counter, SAMPLING_COUNTER); return dst_counter; } RuntimeProfile::Counter* RuntimeProfile::add_sampling_counter(const std::string& name, SampleFn sample_fn) { Counter* dst_counter = add_counter(name, TUnit::DOUBLE_VALUE); register_periodic_counter(NULL, sample_fn, dst_counter, SAMPLING_COUNTER); return dst_counter; } void RuntimeProfile::add_bucketing_counters(const std::string& name, const std::string& parent_counter_name, Counter* src_counter, int num_buckets, std::vector* buckets) { { boost::lock_guard l(_counter_map_lock); _bucketing_counters.insert(buckets); } for (int i = 0; i < num_buckets; ++i) { std::stringstream counter_name; counter_name << name << "=" << i; buckets->push_back( add_counter(counter_name.str(), TUnit::DOUBLE_VALUE, parent_counter_name)); } boost::lock_guard l(_s_periodic_counter_update_state.lock); if (_s_periodic_counter_update_state.update_thread.get() == NULL) { _s_periodic_counter_update_state.update_thread.reset( new boost::thread(&RuntimeProfile::periodic_counter_update_loop)); } BucketCountersInfo info; info.src_counter = src_counter; info.num_sampled = 0; _s_periodic_counter_update_state.bucketing_counters[buckets] = info; } RuntimeProfile::EventSequence* RuntimeProfile::add_event_sequence(const std::string& name) { boost::lock_guard l(_event_sequences_lock); EventSequenceMap::iterator timer_it = _event_sequence_map.find(name); if (timer_it != _event_sequence_map.end()) { return timer_it->second; } EventSequence* timer = _pool->add(new EventSequence()); _event_sequence_map[name] = timer; return timer; } void RuntimeProfile::register_periodic_counter(Counter* src_counter, SampleFn sample_fn, Counter* dst_counter, PeriodicCounterType type) { DCHECK(src_counter == NULL || sample_fn == NULL); boost::lock_guard l(_s_periodic_counter_update_state.lock); if (_s_periodic_counter_update_state.update_thread.get() == NULL) { _s_periodic_counter_update_state.update_thread.reset( new boost::thread(&RuntimeProfile::periodic_counter_update_loop)); } switch (type) { case RATE_COUNTER: { RateCounterInfo counter; counter.src_counter = src_counter; counter.sample_fn = sample_fn; counter.elapsed_ms = 0; _s_periodic_counter_update_state.rate_counters[dst_counter] = counter; break; } case SAMPLING_COUNTER: { SamplingCounterInfo counter; counter.src_counter = src_counter; counter.sample_fn = sample_fn; counter.num_sampled = 0; counter.total_sampled_value = 0; _s_periodic_counter_update_state.sampling_counters[dst_counter] = counter; break; } default: DCHECK(false) << "Unsupported PeriodicCounterType:" << type; } } void RuntimeProfile::stop_rate_counters_updates(Counter* rate_counter) { boost::lock_guard l(_s_periodic_counter_update_state.lock); _s_periodic_counter_update_state.rate_counters.erase(rate_counter); } void RuntimeProfile::stop_sampling_counters_updates(Counter* sampling_counter) { boost::lock_guard l(_s_periodic_counter_update_state.lock); _s_periodic_counter_update_state.sampling_counters.erase(sampling_counter); } void RuntimeProfile::stop_bucketing_counters_updates(std::vector* buckets, bool convert) { int64_t num_sampled = 0; { boost::lock_guard l(_s_periodic_counter_update_state.lock); PeriodicCounterUpdateState::BucketCountersMap::const_iterator itr = _s_periodic_counter_update_state.bucketing_counters.find(buckets); if (itr != _s_periodic_counter_update_state.bucketing_counters.end()) { num_sampled = itr->second.num_sampled; _s_periodic_counter_update_state.bucketing_counters.erase(buckets); } } if (convert && num_sampled > 0) { BOOST_FOREACH (Counter* counter, *buckets) { double perc = 100 * counter->value() / (double)num_sampled; counter->set(perc); } } } RuntimeProfile::PeriodicCounterUpdateState::PeriodicCounterUpdateState() : _done(false) {} RuntimeProfile::PeriodicCounterUpdateState::~PeriodicCounterUpdateState() { if (_s_periodic_counter_update_state.update_thread.get() != NULL) { { // Lock to ensure the update thread will see the update to _done boost::lock_guard l(_s_periodic_counter_update_state.lock); _done = true; } _s_periodic_counter_update_state.update_thread->join(); } } void RuntimeProfile::periodic_counter_update_loop() { while (!_s_periodic_counter_update_state._done) { boost::system_time before_time = boost::get_system_time(); SleepFor(MonoDelta::FromMilliseconds(config::periodic_counter_update_period_ms)); boost::posix_time::time_duration elapsed = boost::get_system_time() - before_time; int elapsed_ms = elapsed.total_milliseconds(); boost::lock_guard l(_s_periodic_counter_update_state.lock); for (PeriodicCounterUpdateState::RateCounterMap::iterator it = _s_periodic_counter_update_state.rate_counters.begin(); it != _s_periodic_counter_update_state.rate_counters.end(); ++it) { it->second.elapsed_ms += elapsed_ms; int64_t value; if (it->second.src_counter != NULL) { value = it->second.src_counter->value(); } else { DCHECK(it->second.sample_fn != NULL); value = it->second.sample_fn(); } int64_t rate = value * 1000 / (it->second.elapsed_ms); it->first->set(rate); } for (PeriodicCounterUpdateState::SamplingCounterMap::iterator it = _s_periodic_counter_update_state.sampling_counters.begin(); it != _s_periodic_counter_update_state.sampling_counters.end(); ++it) { ++it->second.num_sampled; int64_t value; if (it->second.src_counter != NULL) { value = it->second.src_counter->value(); } else { DCHECK(it->second.sample_fn != NULL); value = it->second.sample_fn(); } it->second.total_sampled_value += value; double average = static_cast(it->second.total_sampled_value) / it->second.num_sampled; it->first->set(average); } for (PeriodicCounterUpdateState::BucketCountersMap::iterator it = _s_periodic_counter_update_state.bucketing_counters.begin(); it != _s_periodic_counter_update_state.bucketing_counters.end(); ++it) { int64_t val = it->second.src_counter->value(); if (val >= it->first->size()) { val = it->first->size() - 1; } it->first->at(val)->update(1); ++it->second.num_sampled; } } } void RuntimeProfile::print_child_counters(const std::string& prefix, const std::string& counter_name, const CounterMap& counter_map, const ChildCounterMap& child_counter_map, std::ostream* s) { std::ostream& stream = *s; ChildCounterMap::const_iterator itr = child_counter_map.find(counter_name); if (itr != child_counter_map.end()) { const std::set& child_counters = itr->second; BOOST_FOREACH (const std::string& child_counter, child_counters) { CounterMap::const_iterator iter = counter_map.find(child_counter); DCHECK(iter != counter_map.end()); stream << prefix << " - " << iter->first << ": " << PrettyPrinter::print(iter->second->value(), iter->second->type()) << std::endl; RuntimeProfile::print_child_counters(prefix + " ", child_counter, counter_map, child_counter_map, s); } } } } // namespace doris