--- { "title": "BITMAP", "language": "en" } --- # BITMAP ## Create table The aggregation model needs to be used when creating the table. The data type is bitmap and the aggregation function is bitmap_union. ``` CREATE TABLE `pv_bitmap` (   `dt` int (11) NULL COMMENT" ",   `page` varchar (10) NULL COMMENT" ",   `user_id` bitmap BITMAP_UNION NULL COMMENT" " ) ENGINE = OLAP AGGREGATE KEY (`dt`,` page`) COMMENT "OLAP" DISTRIBUTED BY HASH (`dt`) BUCKETS 2; ``` Note: When the amount of data is large, it is best to create a corresponding rollup table for high-frequency bitmap_union queries ``` ALTER TABLE pv_bitmap ADD ROLLUP pv (page, user_id); ``` ## Data Load `TO_BITMAP (expr)`: Convert 0 ~ 18446744073709551615 unsigned bigint to bitmap `BITMAP_EMPTY ()`: Generate empty bitmap columns, used for insert or import to fill the default value `BITMAP_HASH (expr)`: Convert any type of column to a bitmap by hashing ### Stream Load ``` cat data | curl --location-trusted -u user: passwd -T--H "columns: dt, page, user_id, user_id = to_bitmap (user_id)" http: // host: 8410 / api / test / testDb / _stream_load ``` ``` cat data | curl --location-trusted -u user: passwd -T--H "columns: dt, page, user_id, user_id = bitmap_hash (user_id)" http: // host: 8410 / api / test / testDb / _stream_load ``` ``` cat data | curl --location-trusted -u user: passwd -T--H "columns: dt, page, user_id, user_id = bitmap_empty ()" http: // host: 8410 / api / test / testDb / _stream_load ``` ### Insert Into id2's column type is bitmap ``` insert into bitmap_table1 select id, id2 from bitmap_table2; ``` id2's column type is bitmap ``` INSERT INTO bitmap_table1 (id, id2) VALUES (1001, to_bitmap (1000)), (1001, to_bitmap (2000)); ``` id2's column type is bitmap ``` insert into bitmap_table1 select id, bitmap_union (id2) from bitmap_table2 group by id; ``` id2's column type is int ``` insert into bitmap_table1 select id, to_bitmap (id2) from table; ``` id2's column type is String ``` insert into bitmap_table1 select id, bitmap_hash (id_string) from table; ``` ## Data Query ### Syntax `BITMAP_UNION (expr)`: Calculate the union of two Bitmaps. The return value is the new Bitmap value. `BITMAP_UNION_COUNT (expr)`: Calculate the cardinality of the union of two Bitmaps, equivalent to BITMAP_COUNT (BITMAP_UNION (expr)). It is recommended to use the BITMAP_UNION_COUNT function first, its performance is better than BITMAP_COUNT (BITMAP_UNION (expr)). `BITMAP_UNION_INT (expr)`: Count the number of different values ​​in columns of type TINYINT, SMALLINT and INT, return the sum of COUNT (DISTINCT expr) same `INTERSECT_COUNT (bitmap_column_to_count, filter_column, filter_values ​​...)`: The calculation satisfies filter_column The cardinality of the intersection of multiple bitmaps of the filter. bitmap_column_to_count is a column of type bitmap, filter_column is a column of varying dimensions, and filter_values ​​is a list of dimension values. ### Example The following SQL uses the pv_bitmap table above as an example: Calculate the deduplication value for user_id: ``` select bitmap_union_count (user_id) from pv_bitmap; select bitmap_count (bitmap_union (user_id)) from pv_bitmap; ``` Calculate the deduplication value of id: ``` select bitmap_union_int (id) from pv_bitmap; ``` Calculate the retention of user_id: ``` select intersect_count (user_id, page, 'meituan') as meituan_uv, intersect_count (user_id, page, 'waimai') as waimai_uv, intersect_count (user_id, page, 'meituan', 'waimai') as retention // Number of users appearing on both 'meituan' and 'waimai' pages from pv_bitmap where page in ('meituan', 'waimai'); ``` ## keyword BITMAP, BITMAP_COUNT, BITMAP_EMPTY, BITMAP_UNION, BITMAP_UNION_INT, TO_BITMAP, BITMAP_UNION_COUNT, INTERSECT_COUNT