// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "olap/collect_iterator.h" #include #include "olap/reader.h" #include "olap/row.h" #include "olap/row_block.h" #include "olap/row_cursor.h" #include "olap/rowset/beta_rowset_reader.h" namespace doris { CollectIterator::~CollectIterator() = default; void CollectIterator::init(TabletReader* reader) { _reader = reader; // when aggregate is enabled or key_type is DUP_KEYS, we don't merge // multiple data to aggregate for better performance if (_reader->_reader_type == READER_QUERY && (_reader->_aggregation || _reader->_tablet->keys_type() == KeysType::DUP_KEYS || (_reader->_tablet->keys_type() == KeysType::UNIQUE_KEYS && _reader->_tablet->enable_unique_key_merge_on_write()))) { _merge = false; } } Status CollectIterator::add_child(RowsetReaderSharedPtr rs_reader) { std::unique_ptr child(new Level0Iterator(rs_reader, _reader)); RETURN_NOT_OK(child->init()); if (child->current_row() == nullptr) { return Status::OLAPInternalError(OLAP_ERR_DATA_EOF); } _children.push_back(child.release()); return Status::OK(); } // Build a merge heap. If _merge is true, a rowset with the max rownum // status will be used as the base rowset, and the other rowsets will be merged first and // then merged with the base rowset. void CollectIterator::build_heap(const std::vector& rs_readers) { DCHECK(rs_readers.size() == _children.size()); _reverse = _reader->_tablet_schema->keys_type() == KeysType::UNIQUE_KEYS; SortType sort_type = _reader->_tablet_schema->sort_type(); int sort_col_num = _reader->_tablet_schema->sort_col_num(); if (_children.empty()) { _inner_iter.reset(nullptr); return; } else if (_merge) { DCHECK(!rs_readers.empty()); // build merge heap with two children, a base rowset as level0iterator and // other cumulative rowsets as a level1iterator if (_children.size() > 1) { // find 'base rowset', 'base rowset' is the rowset which contains the max row number int64_t max_row_num = 0; int base_reader_idx = 0; for (size_t i = 0; i < rs_readers.size(); ++i) { int64_t cur_row_num = rs_readers[i]->rowset()->rowset_meta()->num_rows(); if (cur_row_num > max_row_num) { max_row_num = cur_row_num; base_reader_idx = i; } } auto base_reader_child = _children.begin(); std::advance(base_reader_child, base_reader_idx); std::list cumu_children; int i = 0; for (const auto& child : _children) { if (i != base_reader_idx) { cumu_children.push_back(child); } ++i; } Level1Iterator* cumu_iter = new Level1Iterator( cumu_children, cumu_children.size() > 1, _reverse, _reader->_sequence_col_idx, &_reader->_merged_rows, sort_type, sort_col_num); cumu_iter->init(); _inner_iter.reset(new Level1Iterator( std::list {*base_reader_child, cumu_iter}, _merge, _reverse, _reader->_sequence_col_idx, &_reader->_merged_rows, sort_type, sort_col_num)); } else { // _children.size() == 1 _inner_iter.reset(new Level1Iterator(_children, _merge, _reverse, _reader->_sequence_col_idx, &_reader->_merged_rows, sort_type, sort_col_num)); } } else { _inner_iter.reset(new Level1Iterator(_children, _merge, _reverse, _reader->_sequence_col_idx, &_reader->_merged_rows, sort_type, sort_col_num)); } _inner_iter->init(); // Clear _children earlier to release any related references _children.clear(); } bool CollectIterator::LevelIteratorComparator::operator()(const LevelIterator* a, const LevelIterator* b) { // First compare row cursor. const RowCursor* first = a->current_row(); const RowCursor* second = b->current_row(); int cmp_res = compare_row(*first, *second); if (cmp_res != 0) { return cmp_res > 0; } // Second: If _sequence_id_idx != 0 means we need to compare sequence. sequence only use // in unique key. so keep reverse order here if (_sequence_id_idx != -1) { auto seq_first_cell = first->cell(_sequence_id_idx); auto seq_second_cell = second->cell(_sequence_id_idx); auto res = first->schema() ->column(_sequence_id_idx) ->compare_cell(seq_first_cell, seq_second_cell); if (res != 0) { res < 0 ? a->set_need_skip(true) : b->set_need_skip(true); return res < 0; } } // if row cursors equal, compare data version. // read data from higher version to lower version. // for UNIQUE_KEYS just read the highest version and no need agg_update. // for AGG_KEYS if a version is deleted, the lower version no need to agg_update if (_reverse) { auto lower = a->version() < b->version(); lower ? a->set_need_skip(true) : b->set_need_skip(true); return lower; } return a->version() > b->version(); } CollectIterator::BaseComparator::BaseComparator(std::shared_ptr& cmp) { _cmp = cmp; } bool CollectIterator::BaseComparator::operator()(const LevelIterator* a, const LevelIterator* b) { return _cmp->operator()(a, b); } bool CollectIterator::LevelZorderIteratorComparator::operator()(const LevelIterator* a, const LevelIterator* b) { // First compare row cursor. const RowCursor* first = a->current_row(); const RowCursor* second = b->current_row(); int cmp_res = _comparator.compare_row(*first, *second); if (cmp_res != 0) { return cmp_res > 0; } // if row cursors equal, compare data version. // read data from higher version to lower version. // for UNIQUE_KEYS just read the highest version and no need agg_update. // for AGG_KEYS if a version is deleted, the lower version no need to agg_update if (_reverse) { return a->version() < b->version(); } return a->version() > b->version(); } const RowCursor* CollectIterator::current_row(bool* delete_flag) const { if (LIKELY(_inner_iter)) { return _inner_iter->current_row(delete_flag); } return nullptr; } Status CollectIterator::next(const RowCursor** row, bool* delete_flag) { if (LIKELY(_inner_iter)) { return _inner_iter->next(row, delete_flag); } else { return Status::OLAPInternalError(OLAP_ERR_DATA_EOF); } } CollectIterator::Level0Iterator::Level0Iterator(RowsetReaderSharedPtr rs_reader, TabletReader* reader) : _rs_reader(rs_reader), _is_delete(rs_reader->delete_flag()), _reader(reader) { if (LIKELY(rs_reader->type() == RowsetTypePB::BETA_ROWSET)) { _refresh_current_row = &Level0Iterator::_refresh_current_row_v2; } else { LOG(FATAL) << "Not supported rowset type"; } } CollectIterator::Level0Iterator::~Level0Iterator() = default; Status CollectIterator::Level0Iterator::init() { RETURN_NOT_OK_LOG(_row_cursor.init(_reader->_tablet_schema, _reader->_return_columns), "failed to init row cursor"); return (this->*_refresh_current_row)(); } const RowCursor* CollectIterator::Level0Iterator::current_row(bool* delete_flag) const { *delete_flag = _is_delete || _current_row->is_delete(); return _current_row; } const RowCursor* CollectIterator::Level0Iterator::current_row() const { return _current_row; } int64_t CollectIterator::Level0Iterator::version() const { return _rs_reader->version().second; } Status CollectIterator::Level0Iterator::_refresh_current_row_v2() { do { if (_row_block != nullptr && _row_block->has_remaining()) { size_t pos = _row_block->pos(); _row_block->get_row(pos, &_row_cursor); _current_row = &_row_cursor; return Status::OK(); } else { auto res = _rs_reader->next_block(&_row_block); if (!res.ok()) { _current_row = nullptr; return res; } } } while (_row_block != nullptr); _current_row = nullptr; return Status::OLAPInternalError(OLAP_ERR_DATA_EOF); } Status CollectIterator::Level0Iterator::next(const RowCursor** row, bool* delete_flag) { _row_block->pos_inc(); auto res = (this->*_refresh_current_row)(); *row = _current_row; *delete_flag = _is_delete; if (_current_row != nullptr) { *delete_flag = _is_delete || _current_row->is_delete(); } return res; } CollectIterator::Level1Iterator::Level1Iterator( const std::list& children, bool merge, bool reverse, int sequence_id_idx, uint64_t* merge_count, SortType sort_type, int sort_col_num) : _children(children), _merge(merge), _reverse(reverse), _sequence_id_idx(sequence_id_idx), _merged_rows(merge_count), _sort_type(sort_type), _sort_col_num(sort_col_num) {} CollectIterator::LevelIterator::~LevelIterator() = default; CollectIterator::Level1Iterator::~Level1Iterator() { for (auto child : _children) { if (child != nullptr) { delete child; child = nullptr; } } if (_heap) { while (!_heap->empty()) { LevelIterator* it = _heap->top(); if (it != nullptr) { delete it; it = nullptr; } _heap->pop(); } } } // Read next row into *row. // Returns // Status::OLAPInternalError(OLAP_ERR_DATA_EOF) and set *row to nullptr when EOF is reached. // Others when error happens Status CollectIterator::Level1Iterator::next(const RowCursor** row, bool* delete_flag) { if (UNLIKELY(_cur_child == nullptr)) { return Status::OLAPInternalError(OLAP_ERR_DATA_EOF); } if (_merge) { return _merge_next(row, delete_flag); } else { return _normal_next(row, delete_flag); } } // Get top row of the heap, nullptr if reach end. const RowCursor* CollectIterator::Level1Iterator::current_row(bool* delete_flag) const { if (_cur_child != nullptr) { return _cur_child->current_row(delete_flag); } return nullptr; } // Get top row of the heap, nullptr if reach end. const RowCursor* CollectIterator::Level1Iterator::current_row() const { if (_cur_child != nullptr) { return _cur_child->current_row(); } return nullptr; } int64_t CollectIterator::Level1Iterator::version() const { if (_cur_child != nullptr) { return _cur_child->version(); } return -1; } Status CollectIterator::Level1Iterator::init() { if (_children.empty()) { return Status::OK(); } // Only when there are multiple children that need to be merged if (_merge && _children.size() > 1) { std::shared_ptr cmp; if (_sort_type == SortType::ZORDER) { cmp = std::make_shared(_reverse, _sequence_id_idx, _sort_col_num); } else { cmp = std::make_shared(_reverse, _sequence_id_idx); } BaseComparator bcmp(cmp); _heap.reset(new MergeHeap(bcmp)); for (auto child : _children) { DCHECK(child != nullptr); DCHECK(child->current_row() != nullptr); _heap->push(child); } _cur_child = _heap->top(); // Clear _children earlier to release any related references _children.clear(); } else { _merge = false; _heap.reset(nullptr); _cur_child = *(_children.begin()); } return Status::OK(); } inline Status CollectIterator::Level1Iterator::_merge_next(const RowCursor** row, bool* delete_flag) { _heap->pop(); auto res = _cur_child->next(row, delete_flag); if (LIKELY(res.ok())) { _heap->push(_cur_child); _cur_child = _heap->top(); } else if (res.precise_code() == OLAP_ERR_DATA_EOF) { // current child has been read, to read next delete _cur_child; if (!_heap->empty()) { _cur_child = _heap->top(); } else { _cur_child = nullptr; return Status::OLAPInternalError(OLAP_ERR_DATA_EOF); } } else { _cur_child = nullptr; LOG(WARNING) << "failed to get next from child, res=" << res; return res; } if (_cur_child->need_skip()) { (*_merged_rows)++; _cur_child->set_need_skip(false); return _merge_next(row, delete_flag); } *row = _cur_child->current_row(delete_flag); return Status::OK(); } inline Status CollectIterator::Level1Iterator::_normal_next(const RowCursor** row, bool* delete_flag) { auto res = _cur_child->next(row, delete_flag); if (LIKELY(res.ok())) { return Status::OK(); } else if (res.precise_code() == OLAP_ERR_DATA_EOF) { // current child has been read, to read next delete _cur_child; _children.pop_front(); if (!_children.empty()) { _cur_child = *(_children.begin()); *row = _cur_child->current_row(delete_flag); return Status::OK(); } else { _cur_child = nullptr; return Status::OLAPInternalError(OLAP_ERR_DATA_EOF); } } else { _cur_child = nullptr; LOG(WARNING) << "failed to get next from child, res=" << res; return res; } } } // namespace doris