// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "olap/rowid_conversion.h" #include #include "common/logging.h" #include "olap/data_dir.h" #include "olap/delete_handler.h" #include "olap/merger.h" #include "olap/row_cursor.h" #include "olap/rowset/rowset.h" #include "olap/rowset/rowset_factory.h" #include "olap/rowset/rowset_reader.h" #include "olap/rowset/rowset_reader_context.h" #include "olap/rowset/rowset_writer.h" #include "olap/rowset/rowset_writer_context.h" #include "olap/schema.h" #include "olap/tablet_schema.h" #include "olap/tablet_schema_helper.h" #include "util/file_utils.h" namespace doris { static const uint32_t MAX_PATH_LEN = 1024; static StorageEngine* k_engine = nullptr; class TestRowIdConversion : public testing::TestWithParam> { protected: void SetUp() override { char buffer[MAX_PATH_LEN]; EXPECT_NE(getcwd(buffer, MAX_PATH_LEN), nullptr); absolute_dir = std::string(buffer) + kTestDir; if (FileUtils::check_exist(absolute_dir)) { EXPECT_TRUE(FileUtils::remove_all(absolute_dir).ok()); } EXPECT_TRUE(FileUtils::create_dir(absolute_dir).ok()); EXPECT_TRUE(FileUtils::create_dir(absolute_dir + "/tablet_path").ok()); _data_dir = std::make_unique(absolute_dir); _data_dir->update_capacity(); doris::EngineOptions options; k_engine = new StorageEngine(options); StorageEngine::_s_instance = k_engine; } void TearDown() override { if (FileUtils::check_exist(absolute_dir)) { EXPECT_TRUE(FileUtils::remove_all(absolute_dir).ok()); } if (k_engine != nullptr) { k_engine->stop(); delete k_engine; k_engine = nullptr; } } TabletSchemaSPtr create_schema(KeysType keys_type = DUP_KEYS) { TabletSchemaSPtr tablet_schema = std::make_shared(); TabletSchemaPB tablet_schema_pb; tablet_schema_pb.set_keys_type(keys_type); tablet_schema_pb.set_num_short_key_columns(2); tablet_schema_pb.set_num_rows_per_row_block(1024); tablet_schema_pb.set_compress_kind(COMPRESS_NONE); tablet_schema_pb.set_next_column_unique_id(4); ColumnPB* column_1 = tablet_schema_pb.add_column(); column_1->set_unique_id(1); column_1->set_name("c1"); column_1->set_type("INT"); column_1->set_is_key(true); column_1->set_length(4); column_1->set_index_length(4); column_1->set_is_nullable(false); column_1->set_is_bf_column(false); ColumnPB* column_2 = tablet_schema_pb.add_column(); column_2->set_unique_id(2); column_2->set_name("c2"); column_2->set_type("INT"); column_2->set_length(4); column_2->set_index_length(4); column_2->set_is_nullable(true); column_2->set_is_key(false); column_2->set_is_nullable(false); column_2->set_is_bf_column(false); tablet_schema->init_from_pb(tablet_schema_pb); return tablet_schema; } void create_rowset_writer_context(TabletSchemaSPtr tablet_schema, const SegmentsOverlapPB& overlap, uint32_t max_rows_per_segment, RowsetWriterContext* rowset_writer_context) { static int64_t inc_id = 0; RowsetId rowset_id; rowset_id.init(inc_id); rowset_writer_context->rowset_id = rowset_id; rowset_writer_context->rowset_type = BETA_ROWSET; rowset_writer_context->data_dir = _data_dir.get(); rowset_writer_context->rowset_state = VISIBLE; rowset_writer_context->tablet_schema = tablet_schema; rowset_writer_context->tablet_path = "tablet_path"; rowset_writer_context->version = Version(inc_id, inc_id); rowset_writer_context->segments_overlap = overlap; rowset_writer_context->max_rows_per_segment = max_rows_per_segment; inc_id++; } void create_and_init_rowset_reader(Rowset* rowset, RowsetReaderContext& context, RowsetReaderSharedPtr* result) { auto s = rowset->create_reader(result); EXPECT_TRUE(s.ok()); EXPECT_TRUE(*result != nullptr); s = (*result)->init(&context); EXPECT_TRUE(s.ok()); } RowsetSharedPtr create_rowset( TabletSchemaSPtr tablet_schema, const SegmentsOverlapPB& overlap, std::vector>> rowset_data) { RowsetWriterContext writer_context; if (overlap == NONOVERLAPPING) { for (auto i = 1; i < rowset_data.size(); i++) { auto& last_seg_data = rowset_data[i - 1]; auto& cur_seg_data = rowset_data[i]; int64_t last_seg_max = std::get<0>(last_seg_data[last_seg_data.size() - 1]); int64_t cur_seg_min = std::get<0>(cur_seg_data[0]); EXPECT_LT(last_seg_max, cur_seg_min); } } create_rowset_writer_context(tablet_schema, overlap, UINT32_MAX, &writer_context); std::unique_ptr rowset_writer; Status s = RowsetFactory::create_rowset_writer(writer_context, &rowset_writer); EXPECT_TRUE(s.ok()); RowCursor input_row; input_row.init(tablet_schema); uint32_t num_rows = 0; for (int i = 0; i < rowset_data.size(); ++i) { MemPool mem_pool; for (int rid = 0; rid < rowset_data[i].size(); ++rid) { uint32_t c1 = std::get<0>(rowset_data[i][rid]); uint32_t c2 = std::get<1>(rowset_data[i][rid]); input_row.set_field_content(0, reinterpret_cast(&c1), &mem_pool); input_row.set_field_content(1, reinterpret_cast(&c2), &mem_pool); s = rowset_writer->add_row(input_row); EXPECT_TRUE(s.ok()); num_rows++; } s = rowset_writer->flush(); EXPECT_TRUE(s.ok()); } RowsetSharedPtr rowset; rowset = rowset_writer->build(); EXPECT_TRUE(rowset != nullptr); EXPECT_EQ(rowset_data.size(), rowset->rowset_meta()->num_segments()); EXPECT_EQ(num_rows, rowset->rowset_meta()->num_rows()); return rowset; } TabletSharedPtr create_tablet(const TabletSchema& tablet_schema, bool enable_unique_key_merge_on_write, int64_t version, bool has_delete_handler) { std::vector cols; std::unordered_map col_ordinal_to_unique_id; for (auto i = 0; i < tablet_schema.num_columns(); i++) { const TabletColumn& column = tablet_schema.column(i); TColumn col; col.column_type.type = TPrimitiveType::INT; col.__set_column_name(column.name()); col.__set_is_key(column.is_key()); cols.push_back(col); col_ordinal_to_unique_id[i] = i; } TTabletSchema t_tablet_schema; t_tablet_schema.__set_short_key_column_count(tablet_schema.num_short_key_columns()); t_tablet_schema.__set_schema_hash(3333); if (tablet_schema.keys_type() == UNIQUE_KEYS) { t_tablet_schema.__set_keys_type(TKeysType::UNIQUE_KEYS); } else if (tablet_schema.keys_type() == DUP_KEYS) { t_tablet_schema.__set_keys_type(TKeysType::DUP_KEYS); } t_tablet_schema.__set_storage_type(TStorageType::COLUMN); t_tablet_schema.__set_columns(cols); TabletMetaSharedPtr tablet_meta( new TabletMeta(1, 1, 1, 1, 1, 1, t_tablet_schema, 1, col_ordinal_to_unique_id, UniqueId(1, 2), TTabletType::TABLET_TYPE_DISK, TCompressionType::LZ4F, "", enable_unique_key_merge_on_write)); if (has_delete_handler) { // delete data with key < 1000 std::vector conditions; TCondition condition; condition.column_name = tablet_schema.column(0).name(); condition.condition_op = "<"; condition.condition_values.clear(); condition.condition_values.push_back("1000"); conditions.push_back(condition); DeletePredicatePB del_pred; Status st = DeleteHandler::generate_delete_predicate(tablet_schema, conditions, &del_pred); EXPECT_EQ(Status::OK(), st); tablet_meta->add_delete_predicate(del_pred, version); } TabletSharedPtr tablet(new Tablet(tablet_meta, nullptr)); return tablet; } void block_create(TabletSchemaSPtr tablet_schema, vectorized::Block* block) { block->clear(); Schema schema(tablet_schema); const auto& column_ids = schema.column_ids(); for (size_t i = 0; i < schema.num_column_ids(); ++i) { auto column_desc = schema.column(column_ids[i]); auto data_type = Schema::get_data_type_ptr(*column_desc); EXPECT_TRUE(data_type != nullptr); auto column = data_type->create_column(); block->insert(vectorized::ColumnWithTypeAndName(std::move(column), data_type, column_desc->name())); } } void check_rowid_conversion(KeysType keys_type, bool enable_unique_key_merge_on_write, uint32_t num_input_rowset, uint32_t num_segments, uint32_t rows_per_segment, const SegmentsOverlapPB& overlap, bool has_delete_handler) { // generate input data std::vector>>> input_data; generate_input_data(num_input_rowset, num_segments, rows_per_segment, overlap, input_data); TabletSchemaSPtr tablet_schema = create_schema(keys_type); // create input rowset vector input_rowsets; SegmentsOverlapPB new_overlap = overlap; for (auto i = 0; i < num_input_rowset; i++) { if (overlap == OVERLAP_UNKNOWN) { if (i == 0) { new_overlap = NONOVERLAPPING; } else { new_overlap = OVERLAPPING; } } RowsetSharedPtr rowset = create_rowset(tablet_schema, new_overlap, input_data[i]); input_rowsets.push_back(rowset); } // create input rowset reader vector input_rs_readers; for (auto& rowset : input_rowsets) { RowsetReaderSharedPtr rs_reader; EXPECT_TRUE(rowset->create_reader(&rs_reader).ok()); input_rs_readers.push_back(std::move(rs_reader)); } // create output rowset writer RowsetWriterContext writer_context; create_rowset_writer_context(tablet_schema, NONOVERLAPPING, 3456, &writer_context); std::unique_ptr output_rs_writer; Status s = RowsetFactory::create_rowset_writer(writer_context, &output_rs_writer); EXPECT_TRUE(s.ok()); // merge input rowset TabletSharedPtr tablet = create_tablet(*tablet_schema, enable_unique_key_merge_on_write, output_rs_writer->version().first - 1, has_delete_handler); Merger::Statistics stats; RowIdConversion rowid_conversion; stats.rowid_conversion = &rowid_conversion; s = Merger::vmerge_rowsets(tablet, READER_BASE_COMPACTION, tablet_schema, input_rs_readers, output_rs_writer.get(), &stats); EXPECT_TRUE(s.ok()); RowsetSharedPtr out_rowset = output_rs_writer->build(); // create output rowset reader RowsetReaderContext reader_context; reader_context.tablet_schema = tablet_schema; reader_context.need_ordered_result = false; std::vector return_columns = {0, 1}; reader_context.return_columns = &return_columns; reader_context.seek_columns = &return_columns; reader_context.is_vec = true; RowsetReaderSharedPtr output_rs_reader; create_and_init_rowset_reader(out_rowset.get(), reader_context, &output_rs_reader); // read output rowset data vectorized::Block output_block; std::vector> output_data; do { block_create(tablet_schema, &output_block); s = output_rs_reader->next_block(&output_block); auto columns = output_block.get_columns_with_type_and_name(); EXPECT_EQ(columns.size(), 2); for (auto i = 0; i < output_block.rows(); i++) { output_data.emplace_back(columns[0].column->get_int(i), columns[1].column->get_int(i)); } } while (s == Status::OK()); EXPECT_EQ(Status::OLAPInternalError(OLAP_ERR_DATA_EOF), s); EXPECT_EQ(out_rowset->rowset_meta()->num_rows(), output_data.size()); std::vector segment_num_rows; EXPECT_TRUE(output_rs_reader->get_segment_num_rows(&segment_num_rows).ok()); if (has_delete_handler) { // All keys less than 1000 are deleted by delete handler for (auto& item : output_data) { EXPECT_GE(std::get<0>(item), 1000); } } // check rowid conversion uint64_t count = 0; for (auto rs_id = 0; rs_id < input_data.size(); rs_id++) { for (auto s_id = 0; s_id < input_data[rs_id].size(); s_id++) { for (auto row_id = 0; row_id < input_data[rs_id][s_id].size(); row_id++) { RowLocation src(input_rowsets[rs_id]->rowset_id(), s_id, row_id); RowLocation dst; int res = rowid_conversion.get(src, &dst); if (res < 0) { continue; } size_t rowid_in_output_data = dst.row_id; for (auto n = 1; n <= dst.segment_id; n++) { rowid_in_output_data += segment_num_rows[n - 1]; } EXPECT_EQ(std::get<0>(output_data[rowid_in_output_data]), std::get<0>(input_data[rs_id][s_id][row_id])); EXPECT_EQ(std::get<1>(output_data[rowid_in_output_data]), std::get<1>(input_data[rs_id][s_id][row_id])); count++; } } } EXPECT_EQ(count, output_data.size()); } // if overlap == NONOVERLAPPING, all rowsets are non overlapping; // if overlap == OVERLAPPING, all rowsets are overlapping; // if overlap == OVERLAP_UNKNOWN, the first rowset is non overlapping, the // others are overlaping. void generate_input_data( uint32_t num_input_rowset, uint32_t num_segments, uint32_t rows_per_segment, const SegmentsOverlapPB& overlap, std::vector>>>& input_data) { EXPECT_GE(rows_per_segment, 10); EXPECT_GE(num_segments * rows_per_segment, 500); bool is_overlap = false; for (auto i = 0; i < num_input_rowset; i++) { if (overlap == OVERLAPPING) { is_overlap = true; } else if (overlap == NONOVERLAPPING) { is_overlap = false; } else { if (i == 0) { is_overlap = false; } else { is_overlap = true; } } std::vector>> rowset_data; for (auto j = 0; j < num_segments; j++) { std::vector> segment_data; for (auto n = 0; n < rows_per_segment; n++) { int64_t c1 = j * rows_per_segment + n; // There are 500 rows of data overlap between rowsets if (i > 0) { c1 += i * num_segments * rows_per_segment - 500; } if (is_overlap && j > 0) { // There are 10 rows of data overlap between segments c1 += j * rows_per_segment - 10; } int64_t c2 = c1 + 1; segment_data.emplace_back(c1, c2); } rowset_data.emplace_back(segment_data); } input_data.emplace_back(rowset_data); } } private: const std::string kTestDir = "/ut_dir/rowid_conversion_test"; string absolute_dir; std::unique_ptr _data_dir; }; TEST_F(TestRowIdConversion, Basic) { // rowset_id, segment_id, row_id int input_data[11][3] = {{0, 0, 0}, {0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 1, 0}, {0, 1, 1}, {0, 1, 2}, {1, 0, 0}, {1, 0, 1}, {1, 0, 2}, {1, 0, 3}}; RowsetId src_rowset; RowsetId dst_rowset; dst_rowset.init(3); std::vector rss_row_ids; for (auto i = 0; i < 11; i++) { src_rowset.init(input_data[i][0]); RowLocation rss_row_id(src_rowset, input_data[i][1], input_data[i][2]); rss_row_ids.push_back(rss_row_id); } RowIdConversion rowid_conversion; src_rowset.init(0); std::vector rs0_segment_num_rows = {4, 3}; rowid_conversion.init_segment_map(src_rowset, rs0_segment_num_rows); src_rowset.init(1); std::vector rs1_segment_num_rows = {4}; rowid_conversion.init_segment_map(src_rowset, rs1_segment_num_rows); rowid_conversion.set_dst_rowset_id(dst_rowset); std::vector dst_segment_num_rows = {4, 3, 4}; rowid_conversion.add(rss_row_ids, dst_segment_num_rows); int res = 0; src_rowset.init(0); RowLocation src0(src_rowset, 0, 0); RowLocation dst0; res = rowid_conversion.get(src0, &dst0); EXPECT_EQ(dst0.rowset_id, dst_rowset); EXPECT_EQ(dst0.segment_id, 0); EXPECT_EQ(dst0.row_id, 0); EXPECT_EQ(res, 0); src_rowset.init(0); RowLocation src1(src_rowset, 1, 2); RowLocation dst1; res = rowid_conversion.get(src1, &dst1); EXPECT_EQ(dst1.rowset_id, dst_rowset); EXPECT_EQ(dst1.segment_id, 1); EXPECT_EQ(dst1.row_id, 2); EXPECT_EQ(res, 0); src_rowset.init(1); RowLocation src2(src_rowset, 0, 3); RowLocation dst2; res = rowid_conversion.get(src2, &dst2); EXPECT_EQ(dst2.rowset_id, dst_rowset); EXPECT_EQ(dst2.segment_id, 2); EXPECT_EQ(dst2.row_id, 3); EXPECT_EQ(res, 0); src_rowset.init(1); RowLocation src3(src_rowset, 0, 4); RowLocation dst3; res = rowid_conversion.get(src3, &dst3); EXPECT_EQ(res, -1); src_rowset.init(100); RowLocation src4(src_rowset, 5, 4); RowLocation dst4; res = rowid_conversion.get(src4, &dst4); EXPECT_EQ(res, -1); } INSTANTIATE_TEST_SUITE_P( Parameters, TestRowIdConversion, ::testing::ValuesIn(std::vector> { // Parameters: data_type, enable_unique_key_merge_on_write, has_delete_handler {DUP_KEYS, false, false}, {UNIQUE_KEYS, false, false}, {UNIQUE_KEYS, true, false}, {DUP_KEYS, false, true}, {UNIQUE_KEYS, false, true}, {UNIQUE_KEYS, true, true}})); TEST_P(TestRowIdConversion, Conversion) { KeysType keys_type = std::get<0>(GetParam()); bool enable_unique_key_merge_on_write = std::get<1>(GetParam()); bool has_delete_handler = std::get<2>(GetParam()); // if num_input_rowset = 2, VCollectIterator::Level1Iterator::_merge = flase // if num_input_rowset = 3, VCollectIterator::Level1Iterator::_merge = true for (auto num_input_rowset = 2; num_input_rowset <= 3; num_input_rowset++) { uint32_t rows_per_segment = 4567; // RowsetReader: SegmentIterator { uint32_t num_segments = 1; SegmentsOverlapPB overlap = NONOVERLAPPING; std::vector>>> input_data; check_rowid_conversion(keys_type, enable_unique_key_merge_on_write, num_input_rowset, num_segments, rows_per_segment, overlap, has_delete_handler); } // RowsetReader: VMergeIterator { uint32_t num_segments = 2; SegmentsOverlapPB overlap = OVERLAPPING; std::vector>>> input_data; check_rowid_conversion(keys_type, enable_unique_key_merge_on_write, num_input_rowset, num_segments, rows_per_segment, overlap, has_delete_handler); } // RowsetReader: VUnionIterator { uint32_t num_segments = 2; SegmentsOverlapPB overlap = NONOVERLAPPING; std::vector>>> input_data; check_rowid_conversion(keys_type, enable_unique_key_merge_on_write, num_input_rowset, num_segments, rows_per_segment, overlap, has_delete_handler); } // RowsetReader: VUnionIterator + VMergeIterator { uint32_t num_segments = 2; SegmentsOverlapPB overlap = OVERLAP_UNKNOWN; std::vector>>> input_data; check_rowid_conversion(keys_type, enable_unique_key_merge_on_write, num_input_rowset, num_segments, rows_per_segment, overlap, has_delete_handler); } } } } // namespace doris