// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "runtime/memory/mem_tracker_limiter.h" #include #include #include #include #include #include #include #include "bvar/bvar.h" #include "common/config.h" #include "olap/memtable_memory_limiter.h" #include "runtime/exec_env.h" #include "runtime/fragment_mgr.h" #include "runtime/memory/global_memory_arbitrator.h" #include "runtime/thread_context.h" #include "runtime/workload_group/workload_group.h" #include "service/backend_options.h" #include "util/mem_info.h" #include "util/perf_counters.h" #include "util/pretty_printer.h" #include "util/runtime_profile.h" namespace doris { bvar::Adder g_memtrackerlimiter_cnt("memtrackerlimiter_cnt"); constexpr auto GC_MAX_SEEK_TRACKER = 1000; std::atomic MemTrackerLimiter::_enable_print_log_process_usage {true}; // Reset before each free static std::unique_ptr free_top_memory_task_profile { std::make_unique("-")}; static RuntimeProfile::Counter* find_cost_time = ADD_TIMER(free_top_memory_task_profile, "FindCostTime"); static RuntimeProfile::Counter* cancel_cost_time = ADD_TIMER(free_top_memory_task_profile, "CancelCostTime"); static RuntimeProfile::Counter* freed_memory_counter = ADD_COUNTER(free_top_memory_task_profile, "FreedMemory", TUnit::BYTES); static RuntimeProfile::Counter* cancel_tasks_counter = ADD_COUNTER(free_top_memory_task_profile, "CancelTasksNum", TUnit::UNIT); static RuntimeProfile::Counter* seek_tasks_counter = ADD_COUNTER(free_top_memory_task_profile, "SeekTasksNum", TUnit::UNIT); static RuntimeProfile::Counter* previously_canceling_tasks_counter = ADD_COUNTER(free_top_memory_task_profile, "PreviouslyCancelingTasksNum", TUnit::UNIT); MemTrackerLimiter::MemTrackerLimiter(Type type, const std::string& label, int64_t byte_limit) { DCHECK_GE(byte_limit, -1); _consumption = std::make_shared(); _type = type; _label = label; _limit = byte_limit; if (_type == Type::GLOBAL) { _group_num = 0; } else { _group_num = random() % 999 + 1; } // currently only select/load need runtime query statistics if (_type == Type::LOAD || _type == Type::QUERY) { _query_statistics = std::make_shared(); } g_memtrackerlimiter_cnt << 1; } std::shared_ptr MemTrackerLimiter::create_shared(MemTrackerLimiter::Type type, const std::string& label, int64_t byte_limit) { auto tracker = std::make_shared(type, label, byte_limit); #ifndef BE_TEST DCHECK(ExecEnv::tracking_memory()); std::lock_guard l( ExecEnv::GetInstance()->mem_tracker_limiter_pool[tracker->group_num()].group_lock); ExecEnv::GetInstance()->mem_tracker_limiter_pool[tracker->group_num()].trackers.insert( ExecEnv::GetInstance()->mem_tracker_limiter_pool[tracker->group_num()].trackers.end(), tracker); #endif return tracker; } MemTrackerLimiter::~MemTrackerLimiter() { consume(_untracked_mem); static std::string mem_tracker_inaccurate_msg = ", mem tracker not equal to 0 when mem tracker destruct, this usually means that " "memory tracking is inaccurate and SCOPED_ATTACH_TASK and " "SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER are not used correctly. " "1. For query and load, memory leaks may have occurred, it is expected that the query " "mem tracker will be bound to the thread context using SCOPED_ATTACH_TASK and " "SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER before all memory alloc and free. " "2. If a memory alloc is recorded by this tracker, it is expected that be " "recorded in this tracker when memory is freed. " "3. Merge the remaining memory tracking value by " "this tracker into Orphan, if you observe that Orphan is not equal to 0 in the mem " "tracker web or log, this indicates that there may be a memory leak. " "4. If you need to " "transfer memory tracking value between two trackers, can use transfer_to."; if (_consumption->current_value() != 0) { // TODO, expect mem tracker equal to 0 at the task end. if (doris::config::enable_memory_orphan_check && _type == Type::QUERY) { LOG(INFO) << "mem tracker label: " << _label << ", consumption: " << _consumption->current_value() << ", peak consumption: " << _consumption->peak_value() << mem_tracker_inaccurate_msg; } if (ExecEnv::tracking_memory()) { ExecEnv::GetInstance()->orphan_mem_tracker()->consume(_consumption->current_value()); } _consumption->set(0); } g_memtrackerlimiter_cnt << -1; } MemTracker::Snapshot MemTrackerLimiter::make_snapshot() const { Snapshot snapshot; snapshot.type = type_string(_type); snapshot.label = _label; snapshot.limit = _limit; snapshot.cur_consumption = _consumption->current_value(); snapshot.peak_consumption = _consumption->peak_value(); return snapshot; } void MemTrackerLimiter::refresh_global_counter() { std::unordered_map type_mem_sum = { {Type::GLOBAL, 0}, {Type::QUERY, 0}, {Type::LOAD, 0}, {Type::COMPACTION, 0}, {Type::SCHEMA_CHANGE, 0}, {Type::OTHER, 0}}; // always ExecEnv::ready(), because Daemon::_stop_background_threads_latch for (auto& group : ExecEnv::GetInstance()->mem_tracker_limiter_pool) { std::lock_guard l(group.group_lock); for (auto trackerWptr : group.trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr) { type_mem_sum[tracker->type()] += tracker->consumption(); } } } for (auto it : type_mem_sum) { MemTrackerLimiter::TypeMemSum[it.first]->set(it.second); } } void MemTrackerLimiter::clean_tracker_limiter_group() { #ifndef BE_TEST if (ExecEnv::tracking_memory()) { for (auto& group : ExecEnv::GetInstance()->mem_tracker_limiter_pool) { std::lock_guard l(group.group_lock); auto it = group.trackers.begin(); while (it != group.trackers.end()) { if ((*it).expired()) { it = group.trackers.erase(it); } else { ++it; } } } } #endif } void MemTrackerLimiter::make_process_snapshots(std::vector* snapshots) { MemTrackerLimiter::refresh_global_counter(); int64_t all_tracker_mem_sum = 0; Snapshot snapshot; for (auto it : MemTrackerLimiter::TypeMemSum) { snapshot.type = type_string(it.first); snapshot.label = ""; snapshot.limit = -1; snapshot.cur_consumption = it.second->current_value(); snapshot.peak_consumption = it.second->peak_value(); (*snapshots).emplace_back(snapshot); all_tracker_mem_sum += it.second->current_value(); } snapshot.type = "tc/jemalloc cache"; snapshot.label = ""; snapshot.limit = -1; snapshot.cur_consumption = MemInfo::allocator_cache_mem(); snapshot.peak_consumption = -1; (*snapshots).emplace_back(snapshot); all_tracker_mem_sum += MemInfo::allocator_cache_mem(); snapshot.type = "sum of all trackers"; // is virtual memory snapshot.label = ""; snapshot.limit = -1; snapshot.cur_consumption = all_tracker_mem_sum; snapshot.peak_consumption = -1; (*snapshots).emplace_back(snapshot); #ifdef ADDRESS_SANITIZER snapshot.type = "[ASAN]process resident memory"; // from /proc VmRSS VmHWM #else snapshot.type = "process resident memory"; // from /proc VmRSS VmHWM #endif snapshot.label = ""; snapshot.limit = -1; snapshot.cur_consumption = PerfCounters::get_vm_rss(); snapshot.peak_consumption = PerfCounters::get_vm_hwm(); (*snapshots).emplace_back(snapshot); snapshot.type = "process virtual memory"; // from /proc VmSize VmPeak snapshot.label = ""; snapshot.limit = -1; snapshot.cur_consumption = PerfCounters::get_vm_size(); snapshot.peak_consumption = PerfCounters::get_vm_peak(); (*snapshots).emplace_back(snapshot); } void MemTrackerLimiter::make_type_snapshots(std::vector* snapshots, MemTrackerLimiter::Type type) { if (type == Type::GLOBAL) { std::lock_guard l( ExecEnv::GetInstance()->mem_tracker_limiter_pool[0].group_lock); for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[0].trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr) { (*snapshots).emplace_back(tracker->make_snapshot()); MemTracker::make_group_snapshot(snapshots, tracker->group_num(), tracker->label()); } } } else { for (unsigned i = 1; i < ExecEnv::GetInstance()->mem_tracker_limiter_pool.size(); ++i) { std::lock_guard l( ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].group_lock); for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr && tracker->type() == type) { (*snapshots).emplace_back(tracker->make_snapshot()); MemTracker::make_group_snapshot(snapshots, tracker->group_num(), tracker->label()); } } } } } void MemTrackerLimiter::make_top_consumption_snapshots(std::vector* snapshots, int top_num) { std::priority_queue max_pq; // not include global type. for (unsigned i = 1; i < ExecEnv::GetInstance()->mem_tracker_limiter_pool.size(); ++i) { std::lock_guard l( ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].group_lock); for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr) { max_pq.emplace(tracker->make_snapshot()); } } } while (!max_pq.empty() && top_num > 0) { (*snapshots).emplace_back(max_pq.top()); top_num--; max_pq.pop(); } } std::string MemTrackerLimiter::log_usage(MemTracker::Snapshot snapshot) { return fmt::format( "MemTrackerLimiter Label={}, Type={}, Limit={}({} B), Used={}({} B), Peak={}({} B)", snapshot.label, snapshot.type, print_bytes(snapshot.limit), snapshot.limit, print_bytes(snapshot.cur_consumption), snapshot.cur_consumption, print_bytes(snapshot.peak_consumption), snapshot.peak_consumption); } std::string MemTrackerLimiter::type_log_usage(MemTracker::Snapshot snapshot) { return fmt::format("Type={}, Used={}({} B), Peak={}({} B)", snapshot.type, print_bytes(snapshot.cur_consumption), snapshot.cur_consumption, print_bytes(snapshot.peak_consumption), snapshot.peak_consumption); } std::string MemTrackerLimiter::type_detail_usage(const std::string& msg, Type type) { std::string detail = fmt::format("{}, Type:{}, Memory Tracker Summary", msg, type_string(type)); for (unsigned i = 1; i < ExecEnv::GetInstance()->mem_tracker_limiter_pool.size(); ++i) { std::lock_guard l( ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].group_lock); for (auto trackerWptr : ExecEnv::GetInstance()->mem_tracker_limiter_pool[i].trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr && tracker->type() == type) { detail += "\n " + MemTrackerLimiter::log_usage(tracker->make_snapshot()); } } } return detail; } void MemTrackerLimiter::print_log_usage(const std::string& msg) { if (_enable_print_log_usage) { _enable_print_log_usage = false; std::string detail = msg; detail += "\nProcess Memory Summary:\n " + GlobalMemoryArbitrator::process_mem_log_str(); detail += "\nMemory Tracker Summary: " + log_usage(); std::string child_trackers_usage; std::vector snapshots; MemTracker::make_group_snapshot(&snapshots, _group_num, _label); for (const auto& snapshot : snapshots) { child_trackers_usage += "\n " + MemTracker::log_usage(snapshot); } if (!child_trackers_usage.empty()) { detail += child_trackers_usage; } LOG(WARNING) << detail; } } std::string MemTrackerLimiter::log_process_usage_str() { std::string detail; detail += "\nProcess Memory Summary:\n " + GlobalMemoryArbitrator::process_mem_log_str(); std::vector snapshots; MemTrackerLimiter::make_process_snapshots(&snapshots); MemTrackerLimiter::make_type_snapshots(&snapshots, MemTrackerLimiter::Type::GLOBAL); MemTrackerLimiter::make_top_consumption_snapshots(&snapshots, 15); // Add additional tracker printed when memory exceeds limit. snapshots.emplace_back( ExecEnv::GetInstance()->memtable_memory_limiter()->mem_tracker()->make_snapshot()); detail += "\nMemory Tracker Summary:"; for (const auto& snapshot : snapshots) { if (snapshot.label.empty() && snapshot.parent_label.empty()) { detail += "\n " + MemTrackerLimiter::type_log_usage(snapshot); } else if (snapshot.parent_label.empty()) { detail += "\n " + MemTrackerLimiter::log_usage(snapshot); } else { detail += "\n " + MemTracker::log_usage(snapshot); } } return detail; } void MemTrackerLimiter::print_log_process_usage() { // The default interval between two prints is 100ms (config::memory_maintenance_sleep_time_ms). if (MemTrackerLimiter::_enable_print_log_process_usage) { MemTrackerLimiter::_enable_print_log_process_usage = false; LOG(WARNING) << log_process_usage_str(); } } std::string MemTrackerLimiter::tracker_limit_exceeded_str() { std::string err_msg = fmt::format( "memory tracker limit exceeded, tracker label:{}, type:{}, limit " "{}, peak used {}, current used {}. backend {} process memory used {}.", label(), type_string(_type), print_bytes(limit()), print_bytes(_consumption->peak_value()), print_bytes(_consumption->current_value()), BackendOptions::get_localhost(), PerfCounters::get_vm_rss_str()); if (_type == Type::QUERY || _type == Type::LOAD) { err_msg += fmt::format( " exec node:<{}>, can `set exec_mem_limit=8G` to change limit, details see " "be.INFO.", doris::thread_context()->thread_mem_tracker_mgr->last_consumer_tracker()); } else if (_type == Type::SCHEMA_CHANGE) { err_msg += fmt::format( " can modify `memory_limitation_per_thread_for_schema_change_bytes` in be.conf to " "change limit, details see be.INFO."); } return err_msg; } int64_t MemTrackerLimiter::free_top_memory_query(int64_t min_free_mem, const std::string& vm_rss_str, const std::string& mem_available_str, RuntimeProfile* profile, Type type) { return free_top_memory_query( min_free_mem, type, ExecEnv::GetInstance()->mem_tracker_limiter_pool, [&vm_rss_str, &mem_available_str, &type](int64_t mem_consumption, const std::string& label) { return fmt::format( "Process has no memory available, cancel top memory used {}: " "{} memory tracker <{}> consumption {}, backend {} " "process memory used {} exceed limit {} or sys available memory {} " "less than low water mark {}. Execute again after enough memory, " "details see be.INFO.", type_string(type), type_string(type), label, print_bytes(mem_consumption), BackendOptions::get_localhost(), vm_rss_str, MemInfo::mem_limit_str(), mem_available_str, print_bytes(MemInfo::sys_mem_available_low_water_mark())); }, profile, GCType::PROCESS); } int64_t MemTrackerLimiter::free_top_memory_query( int64_t min_free_mem, Type type, std::vector& tracker_groups, const std::function& cancel_msg, RuntimeProfile* profile, GCType GCtype) { using MemTrackerMinQueue = std::priority_queue, std::vector>, std::greater>>; MemTrackerMinQueue min_pq; // After greater than min_free_mem, will not be modified. int64_t prepare_free_mem = 0; std::vector canceling_task; int seek_num = 0; COUNTER_SET(cancel_cost_time, (int64_t)0); COUNTER_SET(find_cost_time, (int64_t)0); COUNTER_SET(freed_memory_counter, (int64_t)0); COUNTER_SET(cancel_tasks_counter, (int64_t)0); COUNTER_SET(seek_tasks_counter, (int64_t)0); COUNTER_SET(previously_canceling_tasks_counter, (int64_t)0); std::string log_prefix = fmt::format("[MemoryGC] GC free {} top memory used {}, ", gc_type_string(GCtype), type_string(type)); LOG(INFO) << fmt::format("{}, start seek all {}, running query and load num: {}", log_prefix, type_string(type), ExecEnv::GetInstance()->fragment_mgr()->running_query_num()); { SCOPED_TIMER(find_cost_time); for (unsigned i = 1; i < tracker_groups.size(); ++i) { if (seek_num > GC_MAX_SEEK_TRACKER) { break; } std::lock_guard l(tracker_groups[i].group_lock); for (auto trackerWptr : tracker_groups[i].trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr && tracker->type() == type) { seek_num++; if (tracker->is_query_cancelled()) { canceling_task.push_back(fmt::format("{}:{} Bytes", tracker->label(), tracker->consumption())); continue; } if (tracker->consumption() > min_free_mem) { min_pq = MemTrackerMinQueue(); min_pq.emplace(tracker->consumption(), tracker->label()); prepare_free_mem = tracker->consumption(); break; } else if (tracker->consumption() + prepare_free_mem < min_free_mem) { min_pq.emplace(tracker->consumption(), tracker->label()); prepare_free_mem += tracker->consumption(); } else if (!min_pq.empty() && tracker->consumption() > min_pq.top().first) { min_pq.emplace(tracker->consumption(), tracker->label()); prepare_free_mem += tracker->consumption(); while (prepare_free_mem - min_pq.top().first > min_free_mem) { prepare_free_mem -= min_pq.top().first; min_pq.pop(); } } } } if (prepare_free_mem > min_free_mem && min_pq.size() == 1) { // Found a big task, short circuit seek. break; } } } COUNTER_UPDATE(seek_tasks_counter, seek_num); COUNTER_UPDATE(previously_canceling_tasks_counter, canceling_task.size()); LOG(INFO) << log_prefix << "seek finished, seek " << seek_num << " tasks. among them, " << min_pq.size() << " tasks will be canceled, " << prepare_free_mem << " memory size prepare free; " << canceling_task.size() << " tasks is being canceled and has not been completed yet;" << (!canceling_task.empty() ? " consist of: " + join(canceling_task, ",") : ""); std::vector usage_strings; { SCOPED_TIMER(cancel_cost_time); while (!min_pq.empty()) { TUniqueId cancelled_queryid = label_to_queryid(min_pq.top().second); if (cancelled_queryid == TUniqueId()) { LOG(WARNING) << log_prefix << "Task ID parsing failed, label: " << min_pq.top().second; min_pq.pop(); continue; } ExecEnv::GetInstance()->fragment_mgr()->cancel_query( cancelled_queryid, PPlanFragmentCancelReason::MEMORY_LIMIT_EXCEED, cancel_msg(min_pq.top().first, min_pq.top().second)); COUNTER_UPDATE(freed_memory_counter, min_pq.top().first); COUNTER_UPDATE(cancel_tasks_counter, 1); usage_strings.push_back(fmt::format("{} memory used {} Bytes", min_pq.top().second, min_pq.top().first)); min_pq.pop(); } } profile->merge(free_top_memory_task_profile.get()); LOG(INFO) << log_prefix << "cancel finished, " << cancel_tasks_counter->value() << " tasks canceled, memory size being freed: " << freed_memory_counter->value() << ", consist of: " << join(usage_strings, ","); return freed_memory_counter->value(); } int64_t MemTrackerLimiter::free_top_overcommit_query(int64_t min_free_mem, const std::string& vm_rss_str, const std::string& mem_available_str, RuntimeProfile* profile, Type type) { return free_top_overcommit_query( min_free_mem, type, ExecEnv::GetInstance()->mem_tracker_limiter_pool, [&vm_rss_str, &mem_available_str, &type](int64_t mem_consumption, const std::string& label) { return fmt::format( "Process has less memory, cancel top memory overcommit {}: " "{} memory tracker <{}> consumption {}, backend {} " "process memory used {} exceed soft limit {} or sys available memory {} " "less than warning water mark {}. Execute again after enough memory, " "details see be.INFO.", type_string(type), type_string(type), label, print_bytes(mem_consumption), BackendOptions::get_localhost(), vm_rss_str, MemInfo::soft_mem_limit_str(), mem_available_str, print_bytes(MemInfo::sys_mem_available_warning_water_mark())); }, profile, GCType::PROCESS); } int64_t MemTrackerLimiter::free_top_overcommit_query( int64_t min_free_mem, Type type, std::vector& tracker_groups, const std::function& cancel_msg, RuntimeProfile* profile, GCType GCtype) { std::priority_queue> max_pq; std::unordered_map query_consumption; std::vector canceling_task; int seek_num = 0; int small_num = 0; COUNTER_SET(cancel_cost_time, (int64_t)0); COUNTER_SET(find_cost_time, (int64_t)0); COUNTER_SET(freed_memory_counter, (int64_t)0); COUNTER_SET(cancel_tasks_counter, (int64_t)0); COUNTER_SET(seek_tasks_counter, (int64_t)0); COUNTER_SET(previously_canceling_tasks_counter, (int64_t)0); std::string log_prefix = fmt::format("[MemoryGC] GC free {} top memory overcommit {}, ", gc_type_string(GCtype), type_string(type)); LOG(INFO) << fmt::format("{}, start seek all {}, running query and load num: {}", log_prefix, type_string(type), ExecEnv::GetInstance()->fragment_mgr()->running_query_num()); { SCOPED_TIMER(find_cost_time); for (unsigned i = 1; i < tracker_groups.size(); ++i) { if (seek_num > GC_MAX_SEEK_TRACKER) { break; } std::lock_guard l(tracker_groups[i].group_lock); for (auto trackerWptr : tracker_groups[i].trackers) { auto tracker = trackerWptr.lock(); if (tracker != nullptr && tracker->type() == type) { seek_num++; // 32M small query does not cancel if (tracker->consumption() <= 33554432 || tracker->consumption() < tracker->limit()) { small_num++; continue; } if (tracker->is_query_cancelled()) { canceling_task.push_back(fmt::format("{}:{} Bytes", tracker->label(), tracker->consumption())); continue; } auto overcommit_ratio = int64_t( (static_cast(tracker->consumption()) / tracker->limit()) * 10000); max_pq.emplace(overcommit_ratio, tracker->label()); query_consumption[tracker->label()] = tracker->consumption(); } } } } COUNTER_UPDATE(seek_tasks_counter, seek_num); COUNTER_UPDATE(previously_canceling_tasks_counter, canceling_task.size()); LOG(INFO) << log_prefix << "seek finished, seek " << seek_num << " tasks. among them, " << query_consumption.size() << " tasks can be canceled; " << small_num << " small tasks that were skipped; " << canceling_task.size() << " tasks is being canceled and has not been completed yet;" << (!canceling_task.empty() ? " consist of: " + join(canceling_task, ",") : ""); // Minor gc does not cancel when there is only one query. if (query_consumption.empty()) { LOG(INFO) << log_prefix << "finished, no task need be canceled."; return 0; } if (query_consumption.size() == 1) { auto iter = query_consumption.begin(); LOG(INFO) << log_prefix << "finished, only one task: " << iter->first << ", memory consumption: " << iter->second << ", no cancel."; return 0; } std::vector usage_strings; { SCOPED_TIMER(cancel_cost_time); while (!max_pq.empty()) { TUniqueId cancelled_queryid = label_to_queryid(max_pq.top().second); if (cancelled_queryid == TUniqueId()) { LOG(WARNING) << log_prefix << "Task ID parsing failed, label: " << max_pq.top().second; max_pq.pop(); continue; } int64_t query_mem = query_consumption[max_pq.top().second]; ExecEnv::GetInstance()->fragment_mgr()->cancel_query( cancelled_queryid, PPlanFragmentCancelReason::MEMORY_LIMIT_EXCEED, cancel_msg(query_mem, max_pq.top().second)); usage_strings.push_back(fmt::format("{} memory used {} Bytes, overcommit ratio: {}", max_pq.top().second, query_mem, max_pq.top().first)); COUNTER_UPDATE(freed_memory_counter, query_mem); COUNTER_UPDATE(cancel_tasks_counter, 1); if (freed_memory_counter->value() > min_free_mem) { break; } max_pq.pop(); } } profile->merge(free_top_memory_task_profile.get()); LOG(INFO) << log_prefix << "cancel finished, " << cancel_tasks_counter->value() << " tasks canceled, memory size being freed: " << freed_memory_counter->value() << ", consist of: " << join(usage_strings, ","); return freed_memory_counter->value(); } } // namespace doris