// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #pragma once #include #include #include #include #include #include #include #include #include "common/exception.h" #include "common/logging.h" #include "gutil/macros.h" #include "runtime/exec_env.h" #include "runtime/memory/mem_tracker_limiter.h" #include "runtime/memory/thread_mem_tracker_mgr.h" #include "runtime/threadlocal.h" #include "util/defer_op.h" // IWYU pragma: keep // Used to observe the memory usage of the specified code segment #if defined(USE_MEM_TRACKER) && !defined(UNDEFINED_BEHAVIOR_SANITIZER) // Count a code segment memory (memory malloc - memory free) to int64_t // Usage example: int64_t scope_mem = 0; { SCOPED_MEM_COUNT(&scope_mem); xxx; xxx; } #define SCOPED_MEM_COUNT(scope_mem) \ auto VARNAME_LINENUM(scope_mem_count) = doris::ScopeMemCount(scope_mem) // Count a code segment memory (memory malloc - memory free) to MemTracker. // Compared to count `scope_mem`, MemTracker is easier to observe from the outside and is thread-safe. // Usage example: std::unique_ptr tracker = std::make_unique("first_tracker"); // { SCOPED_CONSUME_MEM_TRACKER(_mem_tracker.get()); xxx; xxx; } // Usually used to record query more detailed memory, including ExecNode operators. #define SCOPED_CONSUME_MEM_TRACKER(mem_tracker) \ auto VARNAME_LINENUM(add_mem_consumer) = doris::AddThreadMemTrackerConsumer(mem_tracker) #else #define SCOPED_MEM_COUNT(scope_mem) (void)0 #define SCOPED_CONSUME_MEM_TRACKER(mem_tracker) (void)0 #endif // Used to observe query/load/compaction/e.g. execution thread memory usage and respond when memory exceeds the limit. #if defined(USE_MEM_TRACKER) && !defined(UNDEFINED_BEHAVIOR_SANITIZER) // Attach to query/load/compaction/e.g. when thread starts. // This will save some info about a working thread in the thread context. // And count the memory during thread execution (is actually also the code segment that executes the function) // to specify MemTrackerLimiter, and expect to handle when the memory exceeds the limit, for example cancel query. // Usage is similar to SCOPED_CONSUME_MEM_TRACKER. #define SCOPED_ATTACH_TASK(arg1, ...) \ auto VARNAME_LINENUM(attach_task) = AttachTask(arg1, ##__VA_ARGS__) // Switch MemTrackerLimiter for count memory during thread execution. // Usually used after SCOPED_ATTACH_TASK, in order to count the memory of the specified code segment into another // MemTrackerLimiter instead of the MemTrackerLimiter added by the attach task. #define SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER(mem_tracker_limiter) \ auto VARNAME_LINENUM(switch_mem_tracker) = SwitchThreadMemTrackerLimiter(mem_tracker_limiter) #else #define SCOPED_ATTACH_TASK(arg1, ...) (void)0 #define SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER(mem_tracker_limiter) (void)0 #endif #define SKIP_MEMORY_CHECK(...) \ do { \ doris::skip_memory_check++; \ DEFER({ doris::skip_memory_check--; }); \ __VA_ARGS__; \ } while (0) namespace doris { class ThreadContext; class MemTracker; class RuntimeState; extern bthread_key_t btls_key; // Using gcc11 compiles thread_local variable on lower versions of GLIBC will report an error, // see https://github.com/apache/doris/pull/7911 // // If we want to avoid this error, // 1. For non-trivial variables in thread_local, such as std::string, you need to store them as pointers to // ensure that thread_local is trivial, these non-trivial pointers will uniformly call destructors elsewhere. // 2. The default destructor of the thread_local variable cannot be overridden. // // This is difficult to implement. Because the destructor is not overwritten, it means that the outside cannot // be notified when the thread terminates, and the non-trivial pointers in thread_local cannot be released in time. // The func provided by pthread and std::thread doesn't help either. // // So, kudu Class-scoped static thread local implementation was introduced. Solve the above problem by // Thread-scoped thread local + Class-scoped thread local. // // This may look very trick, but it's the best way I can find. // // refer to: // https://gcc.gnu.org/onlinedocs/gcc-3.3.1/gcc/Thread-Local.html // https://stackoverflow.com/questions/12049684/ // https://sourceware.org/glibc/wiki/Destructor%20support%20for%20thread_local%20variables // https://www.jianshu.com/p/756240e837dd // https://man7.org/linux/man-pages/man3/pthread_tryjoin_np.3.html class ThreadContextPtr { public: ThreadContextPtr(); // Cannot add destructor `~ThreadContextPtr`, otherwise it will no longer be of type POD, the reason is as above. // TCMalloc hook is triggered during ThreadContext construction, which may lead to deadlock. bool init = false; DECLARE_STATIC_THREAD_LOCAL(ThreadContext, _ptr); }; inline thread_local ThreadContextPtr thread_context_ptr; inline thread_local int skip_memory_check = 0; // To avoid performance problems caused by frequently calling `bthread_getspecific` to obtain bthread TLS // in tcmalloc hook, cache the key and value of bthread TLS in pthread TLS. inline thread_local ThreadContext* bthread_context; inline thread_local bthread_t bthread_id; // The thread context saves some info about a working thread. // 2 required info: // 1. thread_id: Current thread id, Auto generated. // 2. type: The type is a enum value indicating which type of task current thread is running. // For example: QUERY, LOAD, COMPACTION, ... // 3. task id: A unique id to identify this task. maybe query id, load job id, etc. // // There may be other optional info to be added later. class ThreadContext { public: ThreadContext() { thread_mem_tracker_mgr.reset(new ThreadMemTrackerMgr()); if (ExecEnv::GetInstance()->initialized()) thread_mem_tracker_mgr->init(); } ~ThreadContext() { thread_context_ptr.init = false; } void attach_task(const TUniqueId& task_id, const TUniqueId& fragment_instance_id, const std::shared_ptr& mem_tracker) { #ifndef BE_TEST // will only attach_task at the beginning of the thread function, there should be no duplicate attach_task. DCHECK(mem_tracker); // Orphan is thread default tracker. DCHECK(thread_mem_tracker()->label() == "Orphan") << ", attach mem tracker label: " << mem_tracker->label(); #endif _task_id = task_id; _fragment_instance_id = fragment_instance_id; thread_mem_tracker_mgr->attach_limiter_tracker(mem_tracker, fragment_instance_id); } void detach_task() { _task_id = TUniqueId(); _fragment_instance_id = TUniqueId(); thread_mem_tracker_mgr->detach_limiter_tracker(); } const TUniqueId& task_id() const { return _task_id; } const TUniqueId& fragment_instance_id() const { return _fragment_instance_id; } std::string get_thread_id() { std::stringstream ss; ss << std::this_thread::get_id(); return ss.str(); } // After thread_mem_tracker_mgr is initialized, the current thread TCMalloc Hook starts to // consume/release mem_tracker. // Note that the use of shared_ptr will cause a crash. The guess is that there is an // intermediate state during the copy construction of shared_ptr. Shared_ptr is not equal // to nullptr, but the object it points to is not initialized. At this time, when the memory // is released somewhere, the TCMalloc hook is triggered to cause the crash. std::unique_ptr thread_mem_tracker_mgr; MemTrackerLimiter* thread_mem_tracker() { return thread_mem_tracker_mgr->limiter_mem_tracker_raw(); } private: TUniqueId _task_id; TUniqueId _fragment_instance_id; }; #if defined(UNDEFINED_BEHAVIOR_SANITIZER) static ThreadContext* thread_context() { return thread_context_ptr._ptr; } #else // Cache the pointer of bthread local in pthead local, // Avoid calling bthread_getspecific frequently to get bthread local, which has performance problems. static void pthread_attach_bthread() { bthread_id = bthread_self(); bthread_context = static_cast(bthread_getspecific(btls_key)); if (bthread_context == nullptr) { // A new bthread starts, two scenarios: // 1. First call to bthread_getspecific (and before any bthread_setspecific) returns NULL // 2. There are not enough reusable btls in btls pool. // else, two scenarios: // 1. A new bthread starts, but get a reuses btls. // 2. A pthread switch occurs. Because the pthread switch cannot be accurately identified at the moment. // So tracker call reset 0 like reuses btls. bthread_context = new ThreadContext; // The brpc server should respond as quickly as possible. bthread_context->thread_mem_tracker_mgr->disable_wait_gc(); // set the data so that next time bthread_getspecific in the thread returns the data. CHECK_EQ(0, bthread_setspecific(btls_key, bthread_context)); } } static ThreadContext* thread_context() { if (bthread_self() != 0) { if (bthread_self() != bthread_id) { // A new bthread starts or pthread switch occurs, during this period, stop the use of thread_context. thread_context_ptr.init = false; pthread_attach_bthread(); thread_context_ptr.init = true; } return bthread_context; } else { return thread_context_ptr._ptr; } } #endif class ScopeMemCount { public: explicit ScopeMemCount(int64_t* scope_mem) { _scope_mem = scope_mem; thread_context()->thread_mem_tracker_mgr->start_count_scope_mem(); } ~ScopeMemCount() { *_scope_mem += thread_context()->thread_mem_tracker_mgr->stop_count_scope_mem(); } private: int64_t* _scope_mem; }; class AttachTask { public: explicit AttachTask(const std::shared_ptr& mem_tracker, const TUniqueId& task_id = TUniqueId(), const TUniqueId& fragment_instance_id = TUniqueId()); explicit AttachTask(RuntimeState* runtime_state); ~AttachTask(); }; class SwitchThreadMemTrackerLimiter { public: explicit SwitchThreadMemTrackerLimiter(const std::shared_ptr& mem_tracker) { _old_mem_tracker = thread_context()->thread_mem_tracker_mgr->limiter_mem_tracker(); thread_context()->thread_mem_tracker_mgr->attach_limiter_tracker(mem_tracker, TUniqueId()); } ~SwitchThreadMemTrackerLimiter() { thread_context()->thread_mem_tracker_mgr->detach_limiter_tracker(_old_mem_tracker); } private: std::shared_ptr _old_mem_tracker; }; class AddThreadMemTrackerConsumer { public: // The owner and user of MemTracker are in the same thread, and the raw pointer is faster. // If mem_tracker is nullptr, do nothing. explicit AddThreadMemTrackerConsumer(MemTracker* mem_tracker); // The owner and user of MemTracker are in different threads. If mem_tracker is nullptr, do nothing. explicit AddThreadMemTrackerConsumer(const std::shared_ptr& mem_tracker); ~AddThreadMemTrackerConsumer(); private: std::shared_ptr _mem_tracker = nullptr; // Avoid mem_tracker being released midway. bool _need_pop = false; }; // Basic macros for mem tracker, usually do not need to be modified and used. #ifdef USE_MEM_TRACKER // For the memory that cannot be counted by mem hook, manually count it into the mem tracker, such as mmap. #define CONSUME_THREAD_MEM_TRACKER(size) \ doris::thread_context()->thread_mem_tracker_mgr->consume(size) #define RELEASE_THREAD_MEM_TRACKER(size) \ doris::thread_context()->thread_mem_tracker_mgr->consume(-size) // used to fix the tracking accuracy of caches. #define THREAD_MEM_TRACKER_TRANSFER_TO(size, tracker) \ doris::thread_context()->thread_mem_tracker_mgr->limiter_mem_tracker_raw()->transfer_to( \ size, tracker) #define THREAD_MEM_TRACKER_TRANSFER_FROM(size, tracker) \ tracker->transfer_to( \ size, doris::thread_context()->thread_mem_tracker_mgr->limiter_mem_tracker_raw()) // Mem Hook to consume thread mem tracker // TODO: In the original design, the MemTracker consume method is called before the memory is allocated. // If the consume succeeds, the memory is actually allocated, otherwise an exception is thrown. // But the statistics of memory through TCMalloc new/delete Hook are after the memory is actually allocated, // which is different from the previous behavior. #define CONSUME_MEM_TRACKER(size) \ do { \ if (doris::thread_context_ptr.init) { \ doris::thread_context()->thread_mem_tracker_mgr->consume(size); \ } else if (doris::ExecEnv::GetInstance()->initialized()) { \ doris::ExecEnv::GetInstance()->orphan_mem_tracker_raw()->consume_no_update_peak(size); \ } \ } while (0) #define RELEASE_MEM_TRACKER(size) \ do { \ if (doris::thread_context_ptr.init) { \ doris::thread_context()->thread_mem_tracker_mgr->consume(-size); \ } else if (doris::ExecEnv::GetInstance()->initialized()) { \ doris::ExecEnv::GetInstance()->orphan_mem_tracker_raw()->consume_no_update_peak( \ -size); \ } \ } while (0) #else #define CONSUME_THREAD_MEM_TRACKER(size) (void)0 #define RELEASE_THREAD_MEM_TRACKER(size) (void)0 #define THREAD_MEM_TRACKER_TRANSFER_TO(size, tracker) (void)0 #define THREAD_MEM_TRACKER_TRANSFER_FROM(size, tracker) (void)0 #define CONSUME_MEM_TRACKER(size) (void)0 #define RELEASE_MEM_TRACKER(size) (void)0 #endif } // namespace doris