// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "exec/aggregation_node.h" #include #include #include #include "exec/hash_table.hpp" #include "exprs/agg_fn_evaluator.h" #include "exprs/expr.h" #include "exprs/slot_ref.h" #include "gen_cpp/Exprs_types.h" #include "gen_cpp/PlanNodes_types.h" #include "runtime/descriptors.h" #include "runtime/mem_pool.h" #include "runtime/raw_value.h" #include "runtime/row_batch.h" #include "runtime/runtime_state.h" #include "runtime/string_value.hpp" #include "runtime/tuple.h" #include "runtime/tuple_row.h" #include "util/runtime_profile.h" namespace doris { // TODO: pass in maximum size; enforce by setting limit in mempool // TODO: have a Status ExecNode::init(const TPlanNode&) member function // that does initialization outside of c'tor, so we can indicate errors AggregationNode::AggregationNode(ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs) : ExecNode(pool, tnode, descs), _intermediate_tuple_id(tnode.agg_node.intermediate_tuple_id), _intermediate_tuple_desc(NULL), _output_tuple_id(tnode.agg_node.output_tuple_id), _output_tuple_desc(NULL), _singleton_output_tuple(NULL), //_tuple_pool(new MemPool()), // _process_row_batch_fn(NULL), _needs_finalize(tnode.agg_node.need_finalize), _build_timer(NULL), _get_results_timer(NULL), _hash_table_buckets_counter(NULL) {} AggregationNode::~AggregationNode() {} Status AggregationNode::init(const TPlanNode& tnode, RuntimeState* state) { RETURN_IF_ERROR(ExecNode::init(tnode, state)); // ignore return status for now , so we need to introduce ExecNode::init() RETURN_IF_ERROR( Expr::create_expr_trees(_pool, tnode.agg_node.grouping_exprs, &_probe_expr_ctxs)); for (int i = 0; i < tnode.agg_node.aggregate_functions.size(); ++i) { AggFnEvaluator* evaluator = NULL; AggFnEvaluator::create(_pool, tnode.agg_node.aggregate_functions[i], &evaluator); _aggregate_evaluators.push_back(evaluator); } return Status::OK(); } Status AggregationNode::prepare(RuntimeState* state) { RETURN_IF_ERROR(ExecNode::prepare(state)); _build_timer = ADD_TIMER(runtime_profile(), "BuildTime"); _get_results_timer = ADD_TIMER(runtime_profile(), "GetResultsTime"); _hash_table_buckets_counter = ADD_COUNTER(runtime_profile(), "BuildBuckets", TUnit::UNIT); _hash_table_load_factor_counter = ADD_COUNTER(runtime_profile(), "LoadFactor", TUnit::DOUBLE_VALUE); SCOPED_TIMER(_runtime_profile->total_time_counter()); _intermediate_tuple_desc = state->desc_tbl().get_tuple_descriptor(_intermediate_tuple_id); _output_tuple_desc = state->desc_tbl().get_tuple_descriptor(_output_tuple_id); DCHECK_EQ(_intermediate_tuple_desc->slots().size(), _output_tuple_desc->slots().size()); RETURN_IF_ERROR( Expr::prepare(_probe_expr_ctxs, state, child(0)->row_desc(), expr_mem_tracker())); // Construct build exprs from _agg_tuple_desc for (int i = 0; i < _probe_expr_ctxs.size(); ++i) { SlotDescriptor* desc = _intermediate_tuple_desc->slots()[i]; Expr* expr = new SlotRef(desc); state->obj_pool()->add(expr); _build_expr_ctxs.push_back(new ExprContext(expr)); state->obj_pool()->add(_build_expr_ctxs.back()); } // Construct a new row desc for preparing the build exprs because neither the child's // nor this node's output row desc may contain the intermediate tuple, e.g., // in a single-node plan with an intermediate tuple different from the output tuple. RowDescriptor build_row_desc(_intermediate_tuple_desc, false); RETURN_IF_ERROR(Expr::prepare(_build_expr_ctxs, state, build_row_desc, expr_mem_tracker())); _tuple_pool.reset(new MemPool(mem_tracker().get())); _agg_fn_ctxs.resize(_aggregate_evaluators.size()); int j = _probe_expr_ctxs.size(); for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++j) { // skip non-materialized slots; we don't have evaluators instantiated for those // while (!_agg_tuple_desc->slots()[j]->is_materialized()) { // DCHECK_LT(j, _agg_tuple_desc->slots().size() - 1) // << "#eval= " << _aggregate_evaluators.size() // << " #probe=" << _probe_expr_ctxs.size(); // ++j; // } SlotDescriptor* intermediate_slot_desc = _intermediate_tuple_desc->slots()[j]; SlotDescriptor* output_slot_desc = _output_tuple_desc->slots()[j]; RETURN_IF_ERROR(_aggregate_evaluators[i]->prepare( state, child(0)->row_desc(), _tuple_pool.get(), intermediate_slot_desc, output_slot_desc, mem_tracker(), &_agg_fn_ctxs[i])); state->obj_pool()->add(_agg_fn_ctxs[i]); } // TODO: how many buckets? _hash_tbl.reset(new HashTable(_build_expr_ctxs, _probe_expr_ctxs, 1, true, std::vector(_build_expr_ctxs.size(), false), id(), mem_tracker(), 1024)); if (_probe_expr_ctxs.empty()) { // create single output tuple now; we need to output something // even if our input is empty _singleton_output_tuple = construct_intermediate_tuple(); } return Status::OK(); } Status AggregationNode::open(RuntimeState* state) { RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::OPEN)); SCOPED_TIMER(_runtime_profile->total_time_counter()); RETURN_IF_ERROR(ExecNode::open(state)); RETURN_IF_ERROR(Expr::open(_probe_expr_ctxs, state)); RETURN_IF_ERROR(Expr::open(_build_expr_ctxs, state)); for (int i = 0; i < _aggregate_evaluators.size(); ++i) { RETURN_IF_ERROR(_aggregate_evaluators[i]->open(state, _agg_fn_ctxs[i])); } RETURN_IF_ERROR(_children[0]->open(state)); RowBatch batch(_children[0]->row_desc(), state->batch_size(), mem_tracker().get()); int64_t num_input_rows = 0; int64_t num_agg_rows = 0; bool early_return = false; bool limit_with_no_agg = (limit() != -1 && (_aggregate_evaluators.size() == 0)); DCHECK_EQ(_aggregate_evaluators.size(), _agg_fn_ctxs.size()); while (true) { bool eos = false; RETURN_IF_CANCELLED(state); RETURN_IF_ERROR(state->check_query_state("Aggregation, before getting next from child 0.")); RETURN_IF_ERROR(_children[0]->get_next(state, &batch, &eos)); // SCOPED_TIMER(_build_timer); if (VLOG_ROW_IS_ON) { for (int i = 0; i < batch.num_rows(); ++i) { TupleRow* row = batch.get_row(i); VLOG_ROW << "id=" << id() << " input row: " << row->to_string(_children[0]->row_desc()); } } int64_t agg_rows_before = _hash_tbl->size(); if (_process_row_batch_fn != NULL) { _process_row_batch_fn(this, &batch); } else if (_singleton_output_tuple != NULL) { SCOPED_TIMER(_build_timer); process_row_batch_no_grouping(&batch, _tuple_pool.get()); } else { process_row_batch_with_grouping(&batch, _tuple_pool.get()); if (limit_with_no_agg) { if (_hash_tbl->size() >= limit()) { early_return = true; } } } // RETURN_IF_LIMIT_EXCEEDED(state); RETURN_IF_ERROR(state->check_query_state("Aggregation, after hashing the child 0.")); COUNTER_SET(_hash_table_buckets_counter, _hash_tbl->num_buckets()); COUNTER_SET(_hash_table_load_factor_counter, _hash_tbl->load_factor()); num_agg_rows += (_hash_tbl->size() - agg_rows_before); num_input_rows += batch.num_rows(); batch.reset(); RETURN_IF_ERROR(state->check_query_state("Aggregation, after setting the counter.")); if (eos) { break; } if (early_return) { break; } } if (_singleton_output_tuple != NULL) { _hash_tbl->insert(reinterpret_cast(&_singleton_output_tuple)); ++num_agg_rows; } VLOG_ROW << "id=" << id() << " aggregated " << num_input_rows << " input rows into " << num_agg_rows << " output rows"; _output_iterator = _hash_tbl->begin(); return Status::OK(); } Status AggregationNode::get_next(RuntimeState* state, RowBatch* row_batch, bool* eos) { // 1. `!need_finalize` means this aggregation node not the level two aggregation node // 2. `_singleton_output_tuple != nullptr` means is not group by // 3. `child(0)->rows_returned() == 0` mean not data from child // in level two aggregation node should return NULL result // level one aggregation node set `eos = true` return directly if (UNLIKELY(!_needs_finalize && _singleton_output_tuple != nullptr && child(0)->rows_returned() == 0)) { *eos = true; return Status::OK(); } SCOPED_TIMER(_runtime_profile->total_time_counter()); RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::GETNEXT)); RETURN_IF_CANCELLED(state); RETURN_IF_ERROR(state->check_query_state("Aggregation, before evaluating conjuncts.")); SCOPED_TIMER(_get_results_timer); if (reached_limit()) { *eos = true; return Status::OK(); } ExprContext** ctxs = &_conjunct_ctxs[0]; int num_ctxs = _conjunct_ctxs.size(); int count = 0; const int N = state->batch_size(); while (!_output_iterator.at_end() && !row_batch->at_capacity()) { // This loop can go on for a long time if the conjuncts are very selective. Do query // maintenance every N iterations. if (count++ % N == 0) { RETURN_IF_CANCELLED(state); RETURN_IF_ERROR(state->check_query_state("Aggregation, while evaluating conjuncts.")); } int row_idx = row_batch->add_row(); TupleRow* row = row_batch->get_row(row_idx); Tuple* intermediate_tuple = _output_iterator.get_row()->get_tuple(0); Tuple* output_tuple = finalize_tuple(intermediate_tuple, row_batch->tuple_data_pool()); row->set_tuple(0, output_tuple); if (ExecNode::eval_conjuncts(ctxs, num_ctxs, row)) { VLOG_ROW << "output row: " << row->to_string(row_desc()); row_batch->commit_last_row(); ++_num_rows_returned; if (reached_limit()) { break; } } _output_iterator.next(); } *eos = _output_iterator.at_end() || reached_limit(); if (*eos) { if (_hash_tbl.get() != NULL && _hash_table_buckets_counter != NULL) { COUNTER_SET(_hash_table_buckets_counter, _hash_tbl->num_buckets()); } } COUNTER_SET(_rows_returned_counter, _num_rows_returned); return Status::OK(); } Status AggregationNode::close(RuntimeState* state) { if (is_closed()) { return Status::OK(); } // Iterate through the remaining rows in the hash table and call Serialize/Finalize on // them in order to free any memory allocated by UDAs. Finalize() requires a dst tuple // but we don't actually need the result, so allocate a single dummy tuple to avoid // accumulating memory. Tuple* dummy_dst = NULL; if (_needs_finalize && _output_tuple_desc != NULL) { dummy_dst = Tuple::create(_output_tuple_desc->byte_size(), _tuple_pool.get()); } while (!_output_iterator.at_end()) { Tuple* tuple = _output_iterator.get_row()->get_tuple(0); if (_needs_finalize) { AggFnEvaluator::finalize(_aggregate_evaluators, _agg_fn_ctxs, tuple, dummy_dst); } else { AggFnEvaluator::serialize(_aggregate_evaluators, _agg_fn_ctxs, tuple); } _output_iterator.next(); } for (int i = 0; i < _aggregate_evaluators.size(); ++i) { _aggregate_evaluators[i]->close(state); if (!_agg_fn_ctxs.empty() && _agg_fn_ctxs[i] && _agg_fn_ctxs[i]->impl()) { _agg_fn_ctxs[i]->impl()->close(); } } if (_tuple_pool.get() != NULL) { _tuple_pool->free_all(); } if (_hash_tbl.get() != NULL) { _hash_tbl->close(); } Expr::close(_probe_expr_ctxs, state); Expr::close(_build_expr_ctxs, state); return ExecNode::close(state); } Tuple* AggregationNode::construct_intermediate_tuple() { Tuple* agg_tuple = Tuple::create(_intermediate_tuple_desc->byte_size(), _tuple_pool.get()); std::vector::const_iterator slot_desc = _intermediate_tuple_desc->slots().begin(); // copy grouping values for (int i = 0; i < _probe_expr_ctxs.size(); ++i, ++slot_desc) { if (_hash_tbl->last_expr_value_null(i)) { agg_tuple->set_null((*slot_desc)->null_indicator_offset()); } else { void* src = _hash_tbl->last_expr_value(i); void* dst = agg_tuple->get_slot((*slot_desc)->tuple_offset()); RawValue::write(src, dst, (*slot_desc)->type(), _tuple_pool.get()); } } // Initialize aggregate output. for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++slot_desc) { while (!(*slot_desc)->is_materialized()) { ++slot_desc; } AggFnEvaluator* evaluator = _aggregate_evaluators[i]; evaluator->init(_agg_fn_ctxs[i], agg_tuple); // Codegen specific path. // To minimize branching on the UpdateAggTuple path, initialize the result value // so that UpdateAggTuple doesn't have to check if the aggregation // dst slot is null. // - sum/count: 0 // - min: max_value // - max: min_value // TODO: remove when we don't use the irbuilder for codegen here. // This optimization no longer applies with AnyVal if (!(*slot_desc)->type().is_string_type() && !(*slot_desc)->type().is_date_type()) { ExprValue default_value; void* default_value_ptr = NULL; switch (evaluator->agg_op()) { case TAggregationOp::MIN: default_value_ptr = default_value.set_to_max((*slot_desc)->type()); RawValue::write(default_value_ptr, agg_tuple, *slot_desc, NULL); break; case TAggregationOp::MAX: default_value_ptr = default_value.set_to_min((*slot_desc)->type()); RawValue::write(default_value_ptr, agg_tuple, *slot_desc, NULL); break; default: break; } } } return agg_tuple; } void AggregationNode::update_tuple(Tuple* tuple, TupleRow* row) { DCHECK(tuple != NULL); AggFnEvaluator::add(_aggregate_evaluators, _agg_fn_ctxs, row, tuple); #if 0 std::vector::const_iterator evaluator; int i = 0; for (evaluator = _aggregate_evaluators.begin(); evaluator != _aggregate_evaluators.end(); ++evaluator, ++i) { (*evaluator)->choose_update_or_merge(_agg_fn_ctxs[i], row, tuple); //if (_is_merge) { // (*evaluator)->merge(_agg_fn_ctxs[i], row, tuple, pool); //} else { // (*evaluator)->update(_agg_fn_ctxs[i], row, tuple, pool); //} } #endif } Tuple* AggregationNode::finalize_tuple(Tuple* tuple, MemPool* pool) { DCHECK(tuple != NULL); Tuple* dst = tuple; if (_needs_finalize && _intermediate_tuple_id != _output_tuple_id) { dst = Tuple::create(_output_tuple_desc->byte_size(), pool); } if (_needs_finalize) { AggFnEvaluator::finalize(_aggregate_evaluators, _agg_fn_ctxs, tuple, dst, _singleton_output_tuple != nullptr && child(0)->rows_returned() == 0); } else { AggFnEvaluator::serialize(_aggregate_evaluators, _agg_fn_ctxs, tuple); } // Copy grouping values from tuple to dst. // TODO: Codegen this. if (dst != tuple) { int num_grouping_slots = _probe_expr_ctxs.size(); for (int i = 0; i < num_grouping_slots; ++i) { SlotDescriptor* src_slot_desc = _intermediate_tuple_desc->slots()[i]; SlotDescriptor* dst_slot_desc = _output_tuple_desc->slots()[i]; bool src_slot_null = tuple->is_null(src_slot_desc->null_indicator_offset()); void* src_slot = NULL; if (!src_slot_null) src_slot = tuple->get_slot(src_slot_desc->tuple_offset()); RawValue::write(src_slot, dst, dst_slot_desc, NULL); } } return dst; } void AggregationNode::debug_string(int indentation_level, std::stringstream* out) const { *out << std::string(indentation_level * 2, ' '); *out << "AggregationNode(intermediate_tuple_id=" << _intermediate_tuple_id << " output_tuple_id=" << _output_tuple_id << " needs_finalize=" << _needs_finalize // << " probe_exprs=" << Expr::debug_string(_probe_exprs) << " agg_exprs=" << AggFnEvaluator::debug_string(_aggregate_evaluators); ExecNode::debug_string(indentation_level, out); *out << ")"; } void AggregationNode::push_down_predicate(RuntimeState* state, std::list* expr_ctxs) { // groupby can pushdown, agg can't pushdown // Now we doesn't pushdown for easy. return; } } // namespace doris