// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "vec/olap/vcollect_iterator.h" #include #include #include #include #include #include #include #include "common/compiler_util.h" // IWYU pragma: keep #include "common/status.h" #include "io/io_common.h" #include "olap/olap_common.h" #include "olap/olap_define.h" #include "olap/rowset/rowset.h" #include "olap/rowset/rowset_meta.h" #include "olap/tablet.h" #include "olap/tablet_schema.h" #include "runtime/query_context.h" #include "runtime/runtime_predicate.h" #include "runtime/runtime_state.h" #include "vec/columns/column.h" #include "vec/core/column_with_type_and_name.h" #include "vec/core/field.h" #include "vec/data_types/data_type.h" #include "vec/exprs/vexpr_context.h" namespace doris { using namespace ErrorCode; namespace vectorized { #define RETURN_IF_NOT_EOF_AND_OK(stmt) \ do { \ const Status& _status_ = (stmt); \ if (UNLIKELY(!_status_.ok() && !_status_.is())) { \ return _status_; \ } \ } while (false) VCollectIterator::~VCollectIterator() = default; void VCollectIterator::init(TabletReader* reader, bool ori_data_overlapping, bool force_merge, bool is_reverse) { _reader = reader; // when aggregate is enabled or key_type is DUP_KEYS, we don't merge // multiple data to aggregate for better performance if (_reader->_reader_type == ReaderType::READER_QUERY && (_reader->_direct_mode || _reader->_tablet->keys_type() == KeysType::DUP_KEYS || (_reader->_tablet->keys_type() == KeysType::UNIQUE_KEYS && _reader->_tablet->enable_unique_key_merge_on_write()))) { _merge = false; } // When data is none overlapping, no need to build heap to traverse data if (!ori_data_overlapping) { _merge = false; } else if (force_merge) { _merge = true; } _is_reverse = is_reverse; // use topn_next opt only for DUP_KEYS and UNIQUE_KEYS with MOW if (_reader->_reader_context.read_orderby_key_limit > 0 && (_reader->_tablet->keys_type() == KeysType::DUP_KEYS || (_reader->_tablet->keys_type() == KeysType::UNIQUE_KEYS && _reader->_tablet->enable_unique_key_merge_on_write()))) { _topn_limit = _reader->_reader_context.read_orderby_key_limit; } else { _topn_limit = 0; } } Status VCollectIterator::add_child(const RowSetSplits& rs_splits) { if (use_topn_next()) { _rs_splits.push_back(rs_splits); return Status::OK(); } _children.push_back(std::make_unique(rs_splits.rs_reader, _reader)); return Status::OK(); } // Build a merge heap. If _merge is true, a rowset with the max rownum // status will be used as the base rowset, and the other rowsets will be merged first and // then merged with the base rowset. Status VCollectIterator::build_heap(std::vector& rs_readers) { if (use_topn_next()) { return Status::OK(); } DCHECK(rs_readers.size() == _children.size()); _skip_same = _reader->_tablet_schema->keys_type() == KeysType::UNIQUE_KEYS; if (_children.empty()) { _inner_iter.reset(nullptr); return Status::OK(); } else if (_merge) { DCHECK(!rs_readers.empty()); bool have_multiple_child = false; for (auto [c_iter, r_iter] = std::pair {_children.begin(), rs_readers.begin()}; c_iter != _children.end();) { auto s = (*c_iter)->init(have_multiple_child); if (!s.ok()) { c_iter = _children.erase(c_iter); r_iter = rs_readers.erase(r_iter); if (!s.is()) { return s; } } else { have_multiple_child = true; ++c_iter; ++r_iter; } } // build merge heap with two children, a base rowset as level0iterator and // other cumulative rowsets as a level1iterator if (_children.size() > 1) { // find 'base rowset', 'base rowset' is the rowset which contains the max row number int64_t max_row_num = 0; int base_reader_idx = 0; for (size_t i = 0; i < rs_readers.size(); ++i) { int64_t cur_row_num = rs_readers[i]->rowset()->rowset_meta()->num_rows(); if (cur_row_num > max_row_num) { max_row_num = cur_row_num; base_reader_idx = i; } } auto base_reader_child = _children.begin(); std::advance(base_reader_child, base_reader_idx); std::list> cumu_children; for (auto iter = _children.begin(); iter != _children.end();) { if (iter != base_reader_child) { cumu_children.push_back(std::move(*iter)); iter = _children.erase(iter); } else { ++iter; } } bool is_merge = cumu_children.size() > 1; std::unique_ptr cumu_iter = std::make_unique( std::move(cumu_children), _reader, is_merge, _is_reverse, _skip_same); RETURN_IF_NOT_EOF_AND_OK(cumu_iter->init()); std::list> children; children.push_back(std::move(*base_reader_child)); children.push_back(std::move(cumu_iter)); _inner_iter.reset(new Level1Iterator(std::move(children), _reader, _merge, _is_reverse, _skip_same)); // need to clear _children here, or else if the following _inner_iter->init() return early // base_reader_child will be double deleted _children.clear(); } else { // _children.size() == 1 _inner_iter.reset(new Level1Iterator(std::move(_children), _reader, _merge, _is_reverse, _skip_same)); } } else { auto level1_iter = std::make_unique(std::move(_children), _reader, _merge, _is_reverse, _skip_same); _children.clear(); level1_iter->init_level0_iterators_for_union(); RETURN_IF_ERROR(level1_iter->ensure_first_row_ref()); _inner_iter = std::move(level1_iter); } RETURN_IF_NOT_EOF_AND_OK(_inner_iter->init()); // Clear _children earlier to release any related references _children.clear(); return Status::OK(); } bool VCollectIterator::LevelIteratorComparator::operator()(LevelIterator* lhs, LevelIterator* rhs) { const IteratorRowRef& lhs_ref = *lhs->current_row_ref(); const IteratorRowRef& rhs_ref = *rhs->current_row_ref(); int cmp_res = UNLIKELY(lhs->compare_columns()) ? lhs_ref.compare(rhs_ref, lhs->compare_columns()) : lhs_ref.compare(rhs_ref, lhs->tablet_schema().num_key_columns()); if (cmp_res != 0) { return UNLIKELY(_is_reverse) ? cmp_res < 0 : cmp_res > 0; } if (_sequence != -1) { cmp_res = lhs_ref.block->get_by_position(_sequence).column->compare_at( lhs_ref.row_pos, rhs_ref.row_pos, *(rhs_ref.block->get_by_position(_sequence).column), -1); } // if row cursors equal, compare data version. // read data from higher version to lower version. // for UNIQUE_KEYS just read the highest version and no need agg_update. // for AGG_KEYS if a version is deleted, the lower version no need to agg_update bool lower = (cmp_res != 0) ? (cmp_res < 0) : (lhs->version() < rhs->version()); lower ? lhs->set_same(true) : rhs->set_same(true); return lower; } Status VCollectIterator::current_row(IteratorRowRef* ref) const { if (LIKELY(_inner_iter)) { *ref = *_inner_iter->current_row_ref(); if (ref->row_pos == -1) { return Status::Error(""); } else { return Status::OK(); } } return Status::Error("inner iter is nullptr"); } Status VCollectIterator::next(IteratorRowRef* ref) { if (LIKELY(_inner_iter)) { return _inner_iter->next(ref); } else { return Status::Error(""); } } Status VCollectIterator::next(Block* block) { if (use_topn_next()) { return _topn_next(block); } if (LIKELY(_inner_iter)) { return _inner_iter->next(block); } else { return Status::Error(""); } } Status VCollectIterator::_topn_next(Block* block) { if (_topn_eof) { return Status::Error(""); } auto clone_block = block->clone_empty(); MutableBlock mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block); // clear TEMP columns to avoid column align problem in mutable_block.add_rows bellow auto all_column_names = mutable_block.get_names(); for (auto& name : all_column_names) { if (name.rfind(BeConsts::BLOCK_TEMP_COLUMN_PREFIX, 0) == 0) { mutable_block.erase(name); // clear TEMP columns from block to prevent from storage engine merge with this // fake column block->erase(name); } } if (!_reader->_reader_context.read_orderby_key_columns) { return Status::Error( "read_orderby_key_columns should not be nullptr"); } size_t first_sort_column_idx = (*_reader->_reader_context.read_orderby_key_columns)[0]; const std::vector* sort_columns = _reader->_reader_context.read_orderby_key_columns; BlockRowPosComparator row_pos_comparator(&mutable_block, sort_columns, _reader->_reader_context.read_orderby_key_reverse); std::multiset> sorted_row_pos( row_pos_comparator); if (_is_reverse) { std::reverse(_rs_splits.begin(), _rs_splits.end()); } for (size_t i = 0; i < _rs_splits.size(); i++) { const auto& rs_split = _rs_splits[i]; // init will prune segment by _reader_context.conditions and _reader_context.runtime_conditions RETURN_IF_ERROR(rs_split.rs_reader->init(&_reader->_reader_context, rs_split)); // read _topn_limit rows from this rs size_t read_rows = 0; bool eof = false; while (read_rows < _topn_limit && !eof) { block->clear_column_data(); auto status = rs_split.rs_reader->next_block(block); if (!status.ok()) { if (status.is()) { eof = true; if (block->rows() == 0) { break; } } else { return status; } } auto col_name = block->get_names()[first_sort_column_idx]; // filter block RETURN_IF_ERROR(VExprContext::filter_block( _reader->_reader_context.filter_block_conjuncts, block, block->columns())); // clear TMPE columns to avoid column align problem in mutable_block.add_rows bellow auto all_column_names = block->get_names(); for (auto& name : all_column_names) { if (name.rfind(BeConsts::BLOCK_TEMP_COLUMN_PREFIX, 0) == 0) { block->erase(name); } } // update read rows read_rows += block->rows(); // insert block rows to mutable_block and adjust sorted_row_pos bool changed = false; size_t rows_to_copy = 0; if (sorted_row_pos.empty()) { rows_to_copy = std::min(block->rows(), _topn_limit); } else { // _is_reverse == true last_row_pos is the pos of smallest row // _is_reverse == false last_row_pos is biggest row size_t last_row_pos = *sorted_row_pos.rbegin(); // find the how many rows which is less than the last row in mutable_block for (size_t i = 0; i < block->rows(); i++) { // if there is not enough rows in sorted_row_pos, just copy new rows if (sorted_row_pos.size() + rows_to_copy < _topn_limit) { rows_to_copy++; continue; } DCHECK_GE(block->columns(), sort_columns->size()); DCHECK_GE(mutable_block.columns(), sort_columns->size()); int res = 0; for (auto j : *sort_columns) { DCHECK(block->get_by_position(j).type->equals( *mutable_block.get_datatype_by_position(j))); res = block->get_by_position(j).column->compare_at( i, last_row_pos, *(mutable_block.get_column_by_position(j)), -1); if (res) { break; } } // only copy needed rows // _is_reverse == true > smallest is ok // _is_reverse == false < biggest is ok if ((_is_reverse && res > 0) || (!_is_reverse && res < 0)) { rows_to_copy++; } else { break; } } } if (rows_to_copy > 0) { // create column that is not in mutable_block but in block for (size_t i = mutable_block.columns(); i < block->columns(); ++i) { auto col = block->get_by_position(i).clone_empty(); mutable_block.mutable_columns().push_back(col.column->assume_mutable()); mutable_block.data_types().push_back(std::move(col.type)); mutable_block.get_names().push_back(std::move(col.name)); } size_t base = mutable_block.rows(); // append block to mutable_block mutable_block.add_rows(block, 0, rows_to_copy); // insert appended rows pos in mutable_block to sorted_row_pos and sort it for (size_t i = 0; i < rows_to_copy; i++) { sorted_row_pos.insert(base + i); changed = true; } } // delete to keep _topn_limit row pos if (sorted_row_pos.size() > _topn_limit) { auto first = sorted_row_pos.begin(); for (size_t i = 0; i < _topn_limit; i++) { first++; } sorted_row_pos.erase(first, sorted_row_pos.end()); // shrink mutable_block to save memory when rows > _topn_limit * 2 if (mutable_block.rows() > _topn_limit * 2) { VLOG_DEBUG << "topn debug start shrink mutable_block from " << mutable_block.rows() << " rows"; Block tmp_block = mutable_block.to_block(); clone_block = tmp_block.clone_empty(); mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block); for (auto it = sorted_row_pos.begin(); it != sorted_row_pos.end(); it++) { mutable_block.add_row(&tmp_block, *it); } sorted_row_pos.clear(); for (size_t i = 0; i < _topn_limit; i++) { sorted_row_pos.insert(i); } VLOG_DEBUG << "topn debug finish shrink mutable_block to " << mutable_block.rows() << " rows"; } } // update runtime_predicate if (_reader->_reader_context.use_topn_opt && changed && sorted_row_pos.size() >= _topn_limit) { // get field value from column size_t last_sorted_row = *sorted_row_pos.rbegin(); auto col_ptr = mutable_block.get_column_by_position(first_sort_column_idx).get(); Field new_top; col_ptr->get(last_sorted_row, new_top); // update orderby_extrems in query global context auto query_ctx = _reader->_reader_context.runtime_state->get_query_ctx(); RETURN_IF_ERROR( query_ctx->get_runtime_predicate().update(new_top, col_name, _is_reverse)); } } // end of while (read_rows < _topn_limit && !eof) VLOG_DEBUG << "topn debug rowset " << i << " read_rows=" << read_rows << " eof=" << eof << " _topn_limit=" << _topn_limit << " sorted_row_pos.size()=" << sorted_row_pos.size() << " mutable_block.rows()=" << mutable_block.rows(); } // end of for (auto rs_reader : _rs_readers) // copy result_block to block VLOG_DEBUG << "topn debug result _topn_limit=" << _topn_limit << " sorted_row_pos.size()=" << sorted_row_pos.size() << " mutable_block.rows()=" << mutable_block.rows(); *block = mutable_block.to_block(); // append a column to indicate scanner filter_block is already done auto filtered_datatype = std::make_shared(); auto filtered_column = filtered_datatype->create_column_const(block->rows(), (uint8_t)1); block->insert( {filtered_column, filtered_datatype, BeConsts::BLOCK_TEMP_COLUMN_SCANNER_FILTERED}); _topn_eof = true; return block->rows() > 0 ? Status::OK() : Status::Error(""); } bool VCollectIterator::BlockRowPosComparator::operator()(const size_t& lpos, const size_t& rpos) const { int ret = _mutable_block->compare_at(lpos, rpos, _compare_columns, *_mutable_block, -1); return _is_reverse ? ret > 0 : ret < 0; } VCollectIterator::Level0Iterator::Level0Iterator(RowsetReaderSharedPtr rs_reader, TabletReader* reader) : LevelIterator(reader), _rs_reader(rs_reader), _reader(reader) { DCHECK_EQ(RowsetTypePB::BETA_ROWSET, rs_reader->type()); } Status VCollectIterator::Level0Iterator::init(bool get_data_by_ref) { _get_data_by_ref = get_data_by_ref && _rs_reader->support_return_data_by_ref(); if (!_get_data_by_ref) { _block = std::make_shared(_schema.create_block( _reader->_return_columns, _reader->_tablet_columns_convert_to_null_set)); } auto st = refresh_current_row(); if (_get_data_by_ref && _block_view.size()) { _ref = _block_view[0]; } else { _ref = {_block, 0, false}; } return st; } // if is_first_child = true, return first row in block。Unique keys and agg keys will // read a line first and then start loop : // while (!eof) { // collect_iter->next(&_next_row); // } // so first child load first row and other child row_pos = -1 void VCollectIterator::Level0Iterator::init_for_union(bool get_data_by_ref) { _get_data_by_ref = get_data_by_ref && _rs_reader->support_return_data_by_ref(); } Status VCollectIterator::Level0Iterator::ensure_first_row_ref() { DCHECK(!_get_data_by_ref); auto s = refresh_current_row(); _ref = {_block, 0, false}; return s; } int64_t VCollectIterator::Level0Iterator::version() const { return _rs_reader->version().second; } Status VCollectIterator::Level0Iterator::refresh_current_row() { do { if (_block == nullptr && !_get_data_by_ref) { _block = std::make_shared(_schema.create_block( _reader->_return_columns, _reader->_tablet_columns_convert_to_null_set)); } if (!_is_empty() && _current_valid()) { return Status::OK(); } else { _reset(); auto res = _refresh(); if (!res.ok() && !res.is()) { return res; } if (res.is() && _is_empty()) { break; } if (UNLIKELY(_reader->_reader_context.record_rowids)) { RETURN_IF_ERROR(_rs_reader->current_block_row_locations(&_block_row_locations)); } } } while (!_is_empty()); _ref.row_pos = -1; _current = -1; _rs_reader = nullptr; return Status::Error(""); } Status VCollectIterator::Level0Iterator::next(IteratorRowRef* ref) { if (_get_data_by_ref) { _current++; } else { _ref.row_pos++; } RETURN_IF_ERROR(refresh_current_row()); if (_get_data_by_ref) { _ref = _block_view[_current]; } *ref = _ref; return Status::OK(); } Status VCollectIterator::Level0Iterator::next(Block* block) { CHECK(!_get_data_by_ref); if (_ref.row_pos <= 0 && _ref.block != nullptr && UNLIKELY(_ref.block->rows() > 0)) { block->swap(*_ref.block); _ref.reset(); return Status::OK(); } else { if (_rs_reader == nullptr) { return Status::Error(""); } auto res = _rs_reader->next_block(block); if (!res.ok() && !res.is()) { return res; } if (res.is() && block->rows() == 0) { return Status::Error(""); } if (UNLIKELY(_reader->_reader_context.record_rowids)) { RETURN_IF_ERROR(_rs_reader->current_block_row_locations(&_block_row_locations)); } return Status::OK(); } } RowLocation VCollectIterator::Level0Iterator::current_row_location() { RowLocation& segment_row_id = _block_row_locations[_get_data_by_ref ? _current : _ref.row_pos]; return RowLocation(_rs_reader->rowset()->rowset_id(), segment_row_id.segment_id, segment_row_id.row_id); } Status VCollectIterator::Level0Iterator::current_block_row_locations( std::vector* block_row_locations) { block_row_locations->resize(_block_row_locations.size()); for (auto i = 0; i < _block_row_locations.size(); i++) { RowLocation& row_location = _block_row_locations[i]; (*block_row_locations)[i] = RowLocation(_rs_reader->rowset()->rowset_id(), row_location.segment_id, row_location.row_id); } return Status::OK(); } VCollectIterator::Level1Iterator::Level1Iterator( std::list> children, TabletReader* reader, bool merge, bool is_reverse, bool skip_same) : LevelIterator(reader), _children(std::move(children)), _reader(reader), _merge(merge), _is_reverse(is_reverse), _skip_same(skip_same) { _ref.reset(); // !_merge means that data are in order, so we just reverse children to return data in reverse if (!_merge && _is_reverse) { _children.reverse(); } } VCollectIterator::Level1Iterator::~Level1Iterator() { if (_heap) { while (!_heap->empty()) { delete _heap->top(); _heap->pop(); } } } // Read next row into *row. // Returns // OK when read successfully. // Status::Error("") and set *row to nullptr when EOF is reached. // Others when error happens Status VCollectIterator::Level1Iterator::next(IteratorRowRef* ref) { if (UNLIKELY(_cur_child == nullptr)) { _ref.reset(); return Status::Error(""); } if (_merge) { return _merge_next(ref); } else { return _normal_next(ref); } } // Read next block // Returns // OK when read successfully. // Status::Error("") and set *row to nullptr when EOF is reached. // Others when error happens Status VCollectIterator::Level1Iterator::next(Block* block) { if (UNLIKELY(_cur_child == nullptr)) { return Status::Error(""); } if (_merge) { return _merge_next(block); } else { return _normal_next(block); } } int64_t VCollectIterator::Level1Iterator::version() const { if (_cur_child != nullptr) { return _cur_child->version(); } return -1; } Status VCollectIterator::Level1Iterator::init(bool get_data_by_ref) { if (_children.empty()) { return Status::OK(); } // Only when there are multiple children that need to be merged if (_merge && _children.size() > 1) { auto sequence_loc = -1; for (int loc = 0; loc < _reader->_return_columns.size(); loc++) { if (_reader->_return_columns[loc] == _reader->_sequence_col_idx) { sequence_loc = loc; break; } } _heap.reset(new MergeHeap {LevelIteratorComparator(sequence_loc, _is_reverse)}); for (auto&& child : _children) { DCHECK(child != nullptr); //DCHECK(child->current_row().ok()); _heap->push(child.release()); } _cur_child.reset(_heap->top()); _heap->pop(); // Clear _children earlier to release any related references _children.clear(); } else { _merge = false; _heap.reset(nullptr); _cur_child = std::move(*_children.begin()); _children.pop_front(); } _ref = *_cur_child->current_row_ref(); return Status::OK(); } Status VCollectIterator::Level1Iterator::ensure_first_row_ref() { for (auto iter = _children.begin(); iter != _children.end();) { auto s = (*iter)->ensure_first_row_ref(); if (!s.ok()) { iter = _children.erase(iter); if (!s.is()) { return s; } } else { // we get a real row break; } } return Status::OK(); } void VCollectIterator::Level1Iterator::init_level0_iterators_for_union() { bool have_multiple_child = false; for (auto iter = _children.begin(); iter != _children.end();) { (*iter)->init_for_union(have_multiple_child); have_multiple_child = true; ++iter; } } Status VCollectIterator::Level1Iterator::_merge_next(IteratorRowRef* ref) { auto res = _cur_child->next(ref); if (LIKELY(res.ok())) { _heap->push(_cur_child.release()); _cur_child.reset(_heap->top()); _heap->pop(); } else if (res.is()) { // current child has been read, to read next if (!_heap->empty()) { _cur_child.reset(_heap->top()); _heap->pop(); } else { _ref.reset(); _cur_child.reset(); return Status::Error(""); } } else { _ref.reset(); _cur_child.reset(); LOG(WARNING) << "failed to get next from child, res=" << res; return res; } if (_skip_same && _cur_child->is_same()) { _reader->_merged_rows++; _cur_child->set_same(false); return _merge_next(ref); } _ref = *_cur_child->current_row_ref(); *ref = _ref; _cur_child->set_same(false); return Status::OK(); } Status VCollectIterator::Level1Iterator::_normal_next(IteratorRowRef* ref) { auto res = _cur_child->next(ref); if (LIKELY(res.ok())) { _ref = *ref; return Status::OK(); } else if (res.is()) { // current child has been read, to read next if (!_children.empty()) { _cur_child = std::move(*(_children.begin())); _children.pop_front(); return _normal_next(ref); } else { _cur_child.reset(); return Status::Error(""); } } else { _cur_child.reset(); LOG(WARNING) << "failed to get next from child, res=" << res; return res; } } Status VCollectIterator::Level1Iterator::_merge_next(Block* block) { int target_block_row = 0; auto target_columns = block->mutate_columns(); size_t column_count = target_columns.size(); IteratorRowRef cur_row = _ref; IteratorRowRef pre_row_ref = _ref; // append extra columns (eg. MATCH pred result column) from src_block to block for (size_t i = block->columns(); i < cur_row.block->columns(); ++i) { block->insert(cur_row.block->get_by_position(i).clone_empty()); } auto batch_size = _reader->batch_size(); if (UNLIKELY(_reader->_reader_context.record_rowids)) { _block_row_locations.resize(batch_size); } int continuous_row_in_block = 0; do { if (UNLIKELY(_reader->_reader_context.record_rowids)) { _block_row_locations[target_block_row] = _cur_child->current_row_location(); } ++target_block_row; ++continuous_row_in_block; // cur block finished, copy before merge_next cause merge_next will // clear block column data if (pre_row_ref.row_pos + continuous_row_in_block == pre_row_ref.block->rows()) { const auto& src_block = pre_row_ref.block; RETURN_IF_CATCH_EXCEPTION({ for (size_t i = 0; i < column_count; ++i) { target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column), pre_row_ref.row_pos, continuous_row_in_block); } }); continuous_row_in_block = 0; pre_row_ref.reset(); } auto res = _merge_next(&cur_row); if (UNLIKELY(res.is())) { if (UNLIKELY(_reader->_reader_context.record_rowids)) { _block_row_locations.resize(target_block_row); } block->set_columns(std::move(target_columns)); return res; } if (UNLIKELY(!res.ok())) { LOG(WARNING) << "next failed: " << res; return res; } if (target_block_row >= batch_size) { if (continuous_row_in_block > 0) { const auto& src_block = pre_row_ref.block; for (size_t i = 0; i < column_count; ++i) { target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column), pre_row_ref.row_pos, continuous_row_in_block); } } block->set_columns(std::move(target_columns)); return Status::OK(); } if (continuous_row_in_block == 0) { pre_row_ref = _ref; continue; } // copy row if meet a new block if (cur_row.block != pre_row_ref.block) { const auto& src_block = pre_row_ref.block; for (size_t i = 0; i < column_count; ++i) { target_columns[i]->insert_range_from(*(src_block->get_by_position(i).column), pre_row_ref.row_pos, continuous_row_in_block); } continuous_row_in_block = 0; pre_row_ref = cur_row; } } while (true); return Status::OK(); } Status VCollectIterator::Level1Iterator::_normal_next(Block* block) { auto res = _cur_child->next(block); if (LIKELY(res.ok())) { return Status::OK(); } else if (res.is()) { // current child has been read, to read next if (!_children.empty()) { _cur_child = std::move(*(_children.begin())); _children.pop_front(); return _normal_next(block); } else { _cur_child.reset(); return Status::Error(""); } } else { _cur_child.reset(); LOG(WARNING) << "failed to get next from child, res=" << res; return res; } } Status VCollectIterator::Level1Iterator::current_block_row_locations( std::vector* block_row_locations) { if (!_merge) { if (UNLIKELY(_cur_child == nullptr)) { block_row_locations->clear(); return Status::Error(""); } return _cur_child->current_block_row_locations(block_row_locations); } else { DCHECK(_reader->_reader_context.record_rowids); *block_row_locations = _block_row_locations; return Status::OK(); } } } // namespace vectorized } // namespace doris