// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "olap/memtable.h" #include #include #include #include #include #include #include #include "bvar/bvar.h" #include "common/config.h" #include "olap/memtable_memory_limiter.h" #include "olap/olap_define.h" #include "olap/tablet_schema.h" #include "runtime/descriptors.h" #include "runtime/exec_env.h" #include "runtime/thread_context.h" #include "tablet_meta.h" #include "util/runtime_profile.h" #include "util/stopwatch.hpp" #include "vec/aggregate_functions/aggregate_function_reader.h" #include "vec/aggregate_functions/aggregate_function_simple_factory.h" #include "vec/columns/column.h" namespace doris { bvar::Adder g_memtable_cnt("memtable_cnt"); bvar::Adder g_memtable_input_block_allocated_size("memtable_input_block_allocated_size"); using namespace ErrorCode; MemTable::MemTable(int64_t tablet_id, std::shared_ptr tablet_schema, const std::vector* slot_descs, TupleDescriptor* tuple_desc, bool enable_unique_key_mow, PartialUpdateInfo* partial_update_info, const std::shared_ptr& insert_mem_tracker, const std::shared_ptr& flush_mem_tracker) : _tablet_id(tablet_id), _enable_unique_key_mow(enable_unique_key_mow), _keys_type(tablet_schema->keys_type()), _tablet_schema(tablet_schema), _insert_mem_tracker(insert_mem_tracker), _flush_mem_tracker(flush_mem_tracker), _is_first_insertion(true), _agg_functions(tablet_schema->num_columns()), _offsets_of_aggregate_states(tablet_schema->num_columns()), _total_size_of_aggregate_states(0), _mem_usage(0) { g_memtable_cnt << 1; _query_thread_context.init(); _arena = std::make_unique(); _vec_row_comparator = std::make_shared(_tablet_schema); _num_columns = _tablet_schema->num_columns(); if (partial_update_info != nullptr) { _is_partial_update = partial_update_info->is_partial_update; if (_is_partial_update) { _num_columns = partial_update_info->partial_update_input_columns.size(); if (partial_update_info->is_schema_contains_auto_inc_column && !partial_update_info->is_input_columns_contains_auto_inc_column) { _is_partial_update_and_auto_inc = true; _num_columns += 1; } } } // TODO: Support ZOrderComparator in the future _init_columns_offset_by_slot_descs(slot_descs, tuple_desc); } void MemTable::_init_columns_offset_by_slot_descs(const std::vector* slot_descs, const TupleDescriptor* tuple_desc) { for (auto slot_desc : *slot_descs) { const auto& slots = tuple_desc->slots(); for (int j = 0; j < slots.size(); ++j) { if (slot_desc->id() == slots[j]->id()) { _column_offset.emplace_back(j); break; } } } if (_is_partial_update_and_auto_inc) { _column_offset.emplace_back(_column_offset.size()); } } void MemTable::_init_agg_functions(const vectorized::Block* block) { for (uint32_t cid = _tablet_schema->num_key_columns(); cid < _num_columns; ++cid) { vectorized::AggregateFunctionPtr function; if (_keys_type == KeysType::UNIQUE_KEYS && _enable_unique_key_mow) { // In such table, non-key column's aggregation type is NONE, so we need to construct // the aggregate function manually. function = vectorized::AggregateFunctionSimpleFactory::instance().get( "replace_load", {block->get_data_type(cid)}, block->get_data_type(cid)->is_nullable()); } else { function = _tablet_schema->column(cid).get_aggregate_function(vectorized::AGG_LOAD_SUFFIX); if (function == nullptr) { LOG(WARNING) << "column get aggregate function failed, column=" << _tablet_schema->column(cid).name(); } } DCHECK(function != nullptr); _agg_functions[cid] = function; } for (uint32_t cid = _tablet_schema->num_key_columns(); cid < _num_columns; ++cid) { _offsets_of_aggregate_states[cid] = _total_size_of_aggregate_states; _total_size_of_aggregate_states += _agg_functions[cid]->size_of_data(); // If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned. if (cid + 1 < _num_columns) { size_t alignment_of_next_state = _agg_functions[cid + 1]->align_of_data(); /// Extend total_size to next alignment requirement /// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state. _total_size_of_aggregate_states = (_total_size_of_aggregate_states + alignment_of_next_state - 1) / alignment_of_next_state * alignment_of_next_state; } } } MemTable::~MemTable() { SCOPED_SWITCH_THREAD_MEM_TRACKER_LIMITER(_query_thread_context.query_mem_tracker); g_memtable_input_block_allocated_size << -_input_mutable_block.allocated_bytes(); g_memtable_cnt << -1; if (_keys_type != KeysType::DUP_KEYS) { for (auto it = _row_in_blocks.begin(); it != _row_in_blocks.end(); it++) { if (!(*it)->has_init_agg()) { continue; } // We should release agg_places here, because they are not released when a // load is canceled. for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) { auto function = _agg_functions[i]; DCHECK(function != nullptr); function->destroy((*it)->agg_places(i)); } } } std::for_each(_row_in_blocks.begin(), _row_in_blocks.end(), std::default_delete()); _insert_mem_tracker->release(_mem_usage); _flush_mem_tracker->set_consumption(0); DCHECK_EQ(_insert_mem_tracker->consumption(), 0) << std::endl << MemTracker::log_usage(_insert_mem_tracker->make_snapshot()); DCHECK_EQ(_flush_mem_tracker->consumption(), 0); _arena.reset(); _agg_buffer_pool.clear(); _vec_row_comparator.reset(); _row_in_blocks.clear(); _agg_functions.clear(); _input_mutable_block.clear(); _output_mutable_block.clear(); } int RowInBlockComparator::operator()(const RowInBlock* left, const RowInBlock* right) const { return _pblock->compare_at(left->_row_pos, right->_row_pos, _tablet_schema->num_key_columns(), *_pblock, -1); } Status MemTable::insert(const vectorized::Block* input_block, const std::vector& row_idxs) { if (_is_first_insertion) { _is_first_insertion = false; auto clone_block = input_block->clone_without_columns(&_column_offset); _input_mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block); _vec_row_comparator->set_block(&_input_mutable_block); _output_mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block); if (_keys_type != KeysType::DUP_KEYS) { // there may be additional intermediate columns in input_block // we only need columns indicated by column offset in the output _init_agg_functions(&clone_block); } if (_tablet_schema->has_sequence_col()) { if (_is_partial_update) { // for unique key partial update, sequence column index in block // may be different with the index in `_tablet_schema` for (size_t i = 0; i < clone_block.columns(); i++) { if (clone_block.get_by_position(i).name == SEQUENCE_COL) { _seq_col_idx_in_block = i; break; } } } else { _seq_col_idx_in_block = _tablet_schema->sequence_col_idx(); } } } auto num_rows = row_idxs.size(); size_t cursor_in_mutableblock = _input_mutable_block.rows(); auto block_size0 = _input_mutable_block.allocated_bytes(); RETURN_IF_ERROR(_input_mutable_block.add_rows(input_block, row_idxs.data(), row_idxs.data() + num_rows, &_column_offset)); auto block_size1 = _input_mutable_block.allocated_bytes(); g_memtable_input_block_allocated_size << block_size1 - block_size0; auto input_size = size_t(input_block->bytes() * num_rows / input_block->rows() * config::memtable_insert_memory_ratio); _mem_usage += input_size; _insert_mem_tracker->consume(input_size); for (int i = 0; i < num_rows; i++) { _row_in_blocks.emplace_back(new RowInBlock {cursor_in_mutableblock + i}); } _stat.raw_rows += num_rows; return Status::OK(); } void MemTable::_aggregate_two_row_in_block(vectorized::MutableBlock& mutable_block, RowInBlock* src_row, RowInBlock* dst_row) { if (_tablet_schema->has_sequence_col() && _seq_col_idx_in_block >= 0) { DCHECK_LT(_seq_col_idx_in_block, mutable_block.columns()); auto col_ptr = mutable_block.mutable_columns()[_seq_col_idx_in_block].get(); auto res = col_ptr->compare_at(dst_row->_row_pos, src_row->_row_pos, *col_ptr, -1); // dst sequence column larger than src, don't need to update if (res > 0) { return; } // need to update the row pos in dst row to the src row pos when has // sequence column dst_row->_row_pos = src_row->_row_pos; } // dst is non-sequence row, or dst sequence is smaller for (uint32_t cid = _tablet_schema->num_key_columns(); cid < _num_columns; ++cid) { auto col_ptr = mutable_block.mutable_columns()[cid].get(); _agg_functions[cid]->add(dst_row->agg_places(cid), const_cast(&col_ptr), src_row->_row_pos, _arena.get()); } } Status MemTable::_put_into_output(vectorized::Block& in_block) { SCOPED_RAW_TIMER(&_stat.put_into_output_ns); std::vector row_pos_vec; DCHECK(in_block.rows() <= std::numeric_limits::max()); row_pos_vec.reserve(in_block.rows()); for (int i = 0; i < _row_in_blocks.size(); i++) { row_pos_vec.emplace_back(_row_in_blocks[i]->_row_pos); } return _output_mutable_block.add_rows(&in_block, row_pos_vec.data(), row_pos_vec.data() + in_block.rows()); } size_t MemTable::_sort() { SCOPED_RAW_TIMER(&_stat.sort_ns); _stat.sort_times++; size_t same_keys_num = 0; // sort new rows Tie tie = Tie(_last_sorted_pos, _row_in_blocks.size()); for (size_t i = 0; i < _tablet_schema->num_key_columns(); i++) { auto cmp = [&](const RowInBlock* lhs, const RowInBlock* rhs) -> int { return _input_mutable_block.compare_one_column(lhs->_row_pos, rhs->_row_pos, i, -1); }; _sort_one_column(_row_in_blocks, tie, cmp); } bool is_dup = (_keys_type == KeysType::DUP_KEYS); // sort extra round by _row_pos to make the sort stable auto iter = tie.iter(); while (iter.next()) { pdqsort(std::next(_row_in_blocks.begin(), iter.left()), std::next(_row_in_blocks.begin(), iter.right()), [&is_dup](const RowInBlock* lhs, const RowInBlock* rhs) -> bool { return is_dup ? lhs->_row_pos > rhs->_row_pos : lhs->_row_pos < rhs->_row_pos; }); same_keys_num += iter.right() - iter.left(); } // merge new rows and old rows _vec_row_comparator->set_block(&_input_mutable_block); auto cmp_func = [this, is_dup, &same_keys_num](const RowInBlock* l, const RowInBlock* r) -> bool { auto value = (*(this->_vec_row_comparator))(l, r); if (value == 0) { same_keys_num++; return is_dup ? l->_row_pos > r->_row_pos : l->_row_pos < r->_row_pos; } else { return value < 0; } }; auto new_row_it = std::next(_row_in_blocks.begin(), _last_sorted_pos); std::inplace_merge(_row_in_blocks.begin(), new_row_it, _row_in_blocks.end(), cmp_func); _last_sorted_pos = _row_in_blocks.size(); return same_keys_num; } Status MemTable::_sort_by_cluster_keys() { SCOPED_RAW_TIMER(&_stat.sort_ns); _stat.sort_times++; // sort all rows vectorized::Block in_block = _output_mutable_block.to_block(); vectorized::MutableBlock mutable_block = vectorized::MutableBlock::build_mutable_block(&in_block); auto clone_block = in_block.clone_without_columns(); _output_mutable_block = vectorized::MutableBlock::build_mutable_block(&clone_block); std::vector row_in_blocks; std::unique_ptr> row_in_blocks_deleter((int*)0x01, [&](int*) { std::for_each(row_in_blocks.begin(), row_in_blocks.end(), std::default_delete()); }); row_in_blocks.reserve(mutable_block.rows()); for (size_t i = 0; i < mutable_block.rows(); i++) { row_in_blocks.emplace_back(new RowInBlock {i}); } Tie tie = Tie(0, mutable_block.rows()); for (auto i : _tablet_schema->cluster_key_idxes()) { auto cmp = [&](const RowInBlock* lhs, const RowInBlock* rhs) -> int { return mutable_block.compare_one_column(lhs->_row_pos, rhs->_row_pos, i, -1); }; _sort_one_column(row_in_blocks, tie, cmp); } // sort extra round by _row_pos to make the sort stable auto iter = tie.iter(); while (iter.next()) { pdqsort(std::next(row_in_blocks.begin(), iter.left()), std::next(row_in_blocks.begin(), iter.right()), [](const RowInBlock* lhs, const RowInBlock* rhs) -> bool { return lhs->_row_pos < rhs->_row_pos; }); } in_block = mutable_block.to_block(); SCOPED_RAW_TIMER(&_stat.put_into_output_ns); std::vector row_pos_vec; DCHECK(in_block.rows() <= std::numeric_limits::max()); row_pos_vec.reserve(in_block.rows()); for (int i = 0; i < row_in_blocks.size(); i++) { row_pos_vec.emplace_back(row_in_blocks[i]->_row_pos); } return _output_mutable_block.add_rows(&in_block, row_pos_vec.data(), row_pos_vec.data() + in_block.rows(), &_column_offset); } void MemTable::_sort_one_column(std::vector& row_in_blocks, Tie& tie, std::function cmp) { auto iter = tie.iter(); while (iter.next()) { pdqsort(std::next(row_in_blocks.begin(), iter.left()), std::next(row_in_blocks.begin(), iter.right()), [&cmp](auto lhs, auto rhs) -> bool { return cmp(lhs, rhs) < 0; }); tie[iter.left()] = 0; for (int i = iter.left() + 1; i < iter.right(); i++) { tie[i] = (cmp(row_in_blocks[i - 1], row_in_blocks[i]) == 0); } } } template void MemTable::_finalize_one_row(RowInBlock* row, const vectorized::ColumnsWithTypeAndName& block_data, int row_pos) { // move key columns for (size_t i = 0; i < _tablet_schema->num_key_columns(); ++i) { _output_mutable_block.get_column_by_position(i)->insert_from(*block_data[i].column.get(), row->_row_pos); } if (row->has_init_agg()) { // get value columns from agg_places for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) { auto function = _agg_functions[i]; auto* agg_place = row->agg_places(i); auto* col_ptr = _output_mutable_block.get_column_by_position(i).get(); function->insert_result_into(agg_place, *col_ptr); if constexpr (is_final) { function->destroy(agg_place); } else { function->reset(agg_place); } } _arena->clear(); if constexpr (is_final) { row->remove_init_agg(); } else { for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) { auto function = _agg_functions[i]; auto* agg_place = row->agg_places(i); auto* col_ptr = _output_mutable_block.get_column_by_position(i).get(); function->add(agg_place, const_cast(&col_ptr), row_pos, _arena.get()); } } } else { // move columns for rows do not need agg for (size_t i = _tablet_schema->num_key_columns(); i < _num_columns; ++i) { _output_mutable_block.get_column_by_position(i)->insert_from( *block_data[i].column.get(), row->_row_pos); } } if constexpr (!is_final) { row->_row_pos = row_pos; } } template void MemTable::_aggregate() { SCOPED_RAW_TIMER(&_stat.agg_ns); _stat.agg_times++; vectorized::Block in_block = _input_mutable_block.to_block(); vectorized::MutableBlock mutable_block = vectorized::MutableBlock::build_mutable_block(&in_block); _vec_row_comparator->set_block(&mutable_block); auto& block_data = in_block.get_columns_with_type_and_name(); std::vector temp_row_in_blocks; temp_row_in_blocks.reserve(_last_sorted_pos); RowInBlock* prev_row = nullptr; int row_pos = -1; //only init agg if needed for (int i = 0; i < _row_in_blocks.size(); i++) { if (!temp_row_in_blocks.empty() && (*_vec_row_comparator)(prev_row, _row_in_blocks[i]) == 0) { if (!prev_row->has_init_agg()) { prev_row->init_agg_places( _arena->aligned_alloc(_total_size_of_aggregate_states, 16), _offsets_of_aggregate_states.data()); for (auto cid = _tablet_schema->num_key_columns(); cid < _num_columns; cid++) { auto col_ptr = mutable_block.mutable_columns()[cid].get(); auto data = prev_row->agg_places(cid); _agg_functions[cid]->create(data); _agg_functions[cid]->add( data, const_cast(&col_ptr), prev_row->_row_pos, _arena.get()); } } _stat.merged_rows++; _aggregate_two_row_in_block(mutable_block, _row_in_blocks[i], prev_row); } else { prev_row = _row_in_blocks[i]; if (!temp_row_in_blocks.empty()) { // no more rows to merge for prev row, finalize it _finalize_one_row(temp_row_in_blocks.back(), block_data, row_pos); } temp_row_in_blocks.push_back(prev_row); row_pos++; } } if (!temp_row_in_blocks.empty()) { // finalize the last low _finalize_one_row(temp_row_in_blocks.back(), block_data, row_pos); } if constexpr (!is_final) { // if is not final, we collect the agg results to input_block and then continue to insert size_t shrunked_after_agg = _output_mutable_block.allocated_bytes(); // flush will not run here, so will not duplicate `_flush_mem_tracker` _insert_mem_tracker->consume(shrunked_after_agg - _mem_usage); _mem_usage = shrunked_after_agg; _input_mutable_block.swap(_output_mutable_block); //TODO(weixang):opt here. std::unique_ptr empty_input_block = in_block.create_same_struct_block(0); _output_mutable_block = vectorized::MutableBlock::build_mutable_block(empty_input_block.get()); _output_mutable_block.clear_column_data(); _row_in_blocks = temp_row_in_blocks; _last_sorted_pos = _row_in_blocks.size(); } } void MemTable::shrink_memtable_by_agg() { if (_keys_type == KeysType::DUP_KEYS) { return; } size_t same_keys_num = _sort(); if (same_keys_num != 0) { _aggregate(); } } bool MemTable::need_flush() const { auto max_size = config::write_buffer_size; if (_is_partial_update) { auto update_columns_size = _num_columns; max_size = max_size * update_columns_size / _tablet_schema->num_columns(); max_size = max_size > 1048576 ? max_size : 1048576; } return memory_usage() >= max_size; } bool MemTable::need_agg() const { if (_keys_type == KeysType::AGG_KEYS) { auto max_size = config::write_buffer_size_for_agg; return memory_usage() >= max_size; } return false; } Status MemTable::to_block(std::unique_ptr* res) { size_t same_keys_num = _sort(); if (_keys_type == KeysType::DUP_KEYS || same_keys_num == 0) { if (_keys_type == KeysType::DUP_KEYS && _tablet_schema->num_key_columns() == 0) { _output_mutable_block.swap(_input_mutable_block); } else { vectorized::Block in_block = _input_mutable_block.to_block(); RETURN_IF_ERROR(_put_into_output(in_block)); } } else { _aggregate(); } if (_keys_type == KeysType::UNIQUE_KEYS && _enable_unique_key_mow && !_tablet_schema->cluster_key_idxes().empty()) { RETURN_IF_ERROR(_sort_by_cluster_keys()); } g_memtable_input_block_allocated_size << -_input_mutable_block.allocated_bytes(); _input_mutable_block.clear(); _insert_mem_tracker->release(_mem_usage); _mem_usage = 0; *res = vectorized::Block::create_unique(_output_mutable_block.to_block()); return Status::OK(); } } // namespace doris