// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. // This file is copied from // https://github.com/ClickHouse/ClickHouse/blob/master/src/Core/Block.cpp // and modified by Doris #include "vec/core/block.h" #include #include #include #include #include #include #include "common/status.h" #include "runtime/descriptors.h" #include "runtime/row_batch.h" #include "runtime/tuple.h" #include "runtime/tuple_row.h" #include "udf/udf.h" #include "vec/columns/column.h" #include "vec/columns/column_const.h" #include "vec/columns/column_nullable.h" #include "vec/columns/column_string.h" #include "vec/columns/column_vector.h" #include "vec/columns/columns_common.h" #include "vec/columns/columns_number.h" #include "vec/common/assert_cast.h" #include "vec/common/exception.h" #include "vec/common/string_ref.h" #include "vec/common/typeid_cast.h" #include "vec/data_types/data_type_bitmap.h" #include "vec/data_types/data_type_date.h" #include "vec/data_types/data_type_date_time.h" #include "vec/data_types/data_type_decimal.h" #include "vec/data_types/data_type_factory.hpp" #include "vec/data_types/data_type_hll.h" #include "vec/data_types/data_type_nullable.h" #include "vec/data_types/data_type_number.h" #include "vec/data_types/data_type_string.h" namespace doris::vectorized { Block::Block(std::initializer_list il) : data {il} { initialize_index_by_name(); } Block::Block(const ColumnsWithTypeAndName& data_) : data {data_} { initialize_index_by_name(); } Block::Block(const std::vector& slots, size_t block_size) { for (const auto slot_desc : slots) { auto column_ptr = slot_desc->get_empty_mutable_column(); column_ptr->reserve(block_size); insert(ColumnWithTypeAndName(std::move(column_ptr), slot_desc->get_data_type_ptr(), slot_desc->col_name())); } } Block::Block(const PBlock& pblock) { const char* buf = nullptr; std::string compression_scratch; if (pblock.compressed()) { // Decompress const char* compressed_data = pblock.column_values().c_str(); size_t compressed_size = pblock.column_values().size(); size_t uncompressed_size = 0; bool success = snappy::GetUncompressedLength(compressed_data, compressed_size, &uncompressed_size); DCHECK(success) << "snappy::GetUncompressedLength failed"; compression_scratch.resize(uncompressed_size); success = snappy::RawUncompress(compressed_data, compressed_size, compression_scratch.data()); DCHECK(success) << "snappy::RawUncompress failed"; buf = compression_scratch.data(); } else { buf = pblock.column_values().data(); } for (const auto& pcol_meta : pblock.column_metas()) { DataTypePtr type = DataTypeFactory::instance().create_data_type(pcol_meta); MutableColumnPtr data_column = type->create_column(); buf = type->deserialize(buf, data_column.get()); data.emplace_back(data_column->get_ptr(), type, pcol_meta.name()); } initialize_index_by_name(); } void Block::initialize_index_by_name() { for (size_t i = 0, size = data.size(); i < size; ++i) { index_by_name[data[i].name] = i; } } void Block::insert(size_t position, const ColumnWithTypeAndName& elem) { if (position > data.size()) { LOG(FATAL) << fmt::format("Position out of bound in Block::insert(), max position = {}", data.size()); } for (auto& name_pos : index_by_name) { if (name_pos.second >= position) { ++name_pos.second; } } index_by_name.emplace(elem.name, position); data.emplace(data.begin() + position, elem); } void Block::insert(size_t position, ColumnWithTypeAndName&& elem) { if (position > data.size()) { LOG(FATAL) << fmt::format("Position out of bound in Block::insert(), max position = {}", data.size()); } for (auto& name_pos : index_by_name) { if (name_pos.second >= position) { ++name_pos.second; } } index_by_name.emplace(elem.name, position); data.emplace(data.begin() + position, std::move(elem)); } void Block::insert(const ColumnWithTypeAndName& elem) { index_by_name.emplace(elem.name, data.size()); data.emplace_back(elem); } void Block::insert(ColumnWithTypeAndName&& elem) { index_by_name.emplace(elem.name, data.size()); data.emplace_back(std::move(elem)); } void Block::insert_unique(const ColumnWithTypeAndName& elem) { if (index_by_name.end() == index_by_name.find(elem.name)) { insert(elem); } } void Block::insert_unique(ColumnWithTypeAndName&& elem) { if (index_by_name.end() == index_by_name.find(elem.name)) { insert(std::move(elem)); } } void Block::erase(const std::set& positions) { for (auto it = positions.rbegin(); it != positions.rend(); ++it) { erase(*it); } } void Block::erase(size_t position) { if (data.empty()) { LOG(FATAL) << "Block is empty"; } if (position >= data.size()) { LOG(FATAL) << fmt::format("Position out of bound in Block::erase(), max position = {}", data.size() - 1); } erase_impl(position); } void Block::erase_impl(size_t position) { data.erase(data.begin() + position); for (auto it = index_by_name.begin(); it != index_by_name.end();) { if (it->second == position) index_by_name.erase(it++); else { if (it->second > position) --it->second; ++it; } } } void Block::erase(const String& name) { auto index_it = index_by_name.find(name); if (index_it == index_by_name.end()) { LOG(FATAL) << fmt::format("No such name in Block::erase(): '{}'", name); } erase_impl(index_it->second); } ColumnWithTypeAndName& Block::safe_get_by_position(size_t position) { if (data.empty()) { LOG(FATAL) << "Block is empty"; } if (position >= data.size()) { LOG(FATAL) << fmt::format( "Position {} is out of bound in Block::safe_get_by_position(), max position = {}, " "there are columns: {}", position, data.size() - 1, dump_names()); } return data[position]; } const ColumnWithTypeAndName& Block::safe_get_by_position(size_t position) const { if (data.empty()) { LOG(FATAL) << "Block is empty"; } if (position >= data.size()) { LOG(FATAL) << fmt::format( "Position {} is out of bound in Block::safe_get_by_position(), max position = {}, " "there are columns: {}", position, data.size() - 1, dump_names()); } return data[position]; } ColumnWithTypeAndName& Block::get_by_name(const std::string& name) { auto it = index_by_name.find(name); if (index_by_name.end() == it) { LOG(FATAL) << fmt::format("Not found column {} in block. There are only columns: {}", name, dump_names()); } return data[it->second]; } const ColumnWithTypeAndName& Block::get_by_name(const std::string& name) const { auto it = index_by_name.find(name); if (index_by_name.end() == it) { LOG(FATAL) << fmt::format("Not found column {} in block. There are only columns: {}", name, dump_names()); } return data[it->second]; } bool Block::has(const std::string& name) const { return index_by_name.end() != index_by_name.find(name); } size_t Block::get_position_by_name(const std::string& name) const { auto it = index_by_name.find(name); if (index_by_name.end() == it) { LOG(FATAL) << fmt::format("Not found column {} in block. There are only columns: {}", name, dump_names()); } return it->second; } void Block::check_number_of_rows(bool allow_null_columns) const { ssize_t rows = -1; for (const auto& elem : data) { if (!elem.column && allow_null_columns) continue; if (!elem.column) { LOG(FATAL) << fmt::format( "Column {} in block is nullptr, in method check_number_of_rows.", elem.name); } ssize_t size = elem.column->size(); if (rows == -1) { rows = size; } else if (rows != size) { LOG(FATAL) << fmt::format("Sizes of columns doesn't match: {}:{},{}:{}", data.front().name, rows, elem.name, size); } } } size_t Block::rows() const { for (const auto& elem : data) { if (elem.column) { return elem.column->size(); } } return 0; } void Block::set_num_rows(size_t length) { if (rows() > length) { for (auto& elem : data) { if (elem.column) { elem.column = elem.column->cut(0, length); } } } } void Block::skip_num_rows(int64_t& length) { auto origin_rows = rows(); if (origin_rows <= length) { clear(); length -= origin_rows; } else { for (auto& elem : data) { if (elem.column) { elem.column = elem.column->cut(length, origin_rows - length); } } } } size_t Block::bytes() const { size_t res = 0; for (const auto& elem : data) { res += elem.column->byte_size(); } return res; } size_t Block::allocated_bytes() const { size_t res = 0; for (const auto& elem : data) { res += elem.column->allocated_bytes(); } return res; } std::string Block::dump_names() const { std::stringstream out; for (auto it = data.begin(); it != data.end(); ++it) { if (it != data.begin()) out << ", "; out << it->name; } return out.str(); } std::string Block::dump_data(size_t begin, size_t row_limit) const { if (rows() == 0) { return "empty block."; } std::vector headers; std::vector headers_size; for (auto it = data.begin(); it != data.end(); ++it) { std::string s = fmt::format("{}({})", it->name, it->type->get_name()); headers_size.push_back(s.size() > 15 ? s.size() : 15); headers.emplace_back(s); } std::stringstream out; // header upper line auto line = [&]() { for (size_t i = 0; i < columns(); ++i) { out << std::setfill('-') << std::setw(1) << "+" << std::setw(headers_size[i]) << "-"; } out << std::setw(1) << "+" << std::endl; }; line(); // header text for (size_t i = 0; i < columns(); ++i) { out << std::setfill(' ') << std::setw(1) << "|" << std::left << std::setw(headers_size[i]) << headers[i]; } out << std::setw(1) << "|" << std::endl; // header bottom line line(); // content for (size_t row_num = begin; row_num < rows() && row_num < row_limit + begin; ++row_num) { for (size_t i = 0; i < columns(); ++i) { std::string s = ""; if (data[i].column) { s = data[i].to_string(row_num); } if (s.length() > headers_size[i]) { s = s.substr(0, headers_size[i] - 3) + "..."; } out << std::setfill(' ') << std::setw(1) << "|" << std::setw(headers_size[i]) << std::right << s; } out << std::setw(1) << "|" << std::endl; } // bottom line line(); if (row_limit < rows()) { out << rows() << " rows in block, only show first " << row_limit << " rows." << std::endl; } return out.str(); } std::string Block::dump_structure() const { // WriteBufferFromOwnString out; std::stringstream out; for (auto it = data.begin(); it != data.end(); ++it) { if (it != data.begin()) { out << ", "; } out << it->dump_structure(); } return out.str(); } Block Block::clone_empty() const { Block res; for (const auto& elem : data) { res.insert(elem.clone_empty()); } return res; } MutableColumns Block::clone_empty_columns() const { size_t num_columns = data.size(); MutableColumns columns(num_columns); for (size_t i = 0; i < num_columns; ++i) { columns[i] = data[i].column ? data[i].column->clone_empty() : data[i].type->create_column(); } return columns; } Columns Block::get_columns() const { size_t num_columns = data.size(); Columns columns(num_columns); for (size_t i = 0; i < num_columns; ++i) { columns[i] = data[i].column; } return columns; } MutableColumns Block::mutate_columns() { size_t num_columns = data.size(); MutableColumns columns(num_columns); for (size_t i = 0; i < num_columns; ++i) { columns[i] = data[i].column ? (*std::move(data[i].column)).mutate() : data[i].type->create_column(); } return columns; } void Block::set_columns(MutableColumns&& columns) { /// TODO: assert if |columns| doesn't match |data|! size_t num_columns = data.size(); for (size_t i = 0; i < num_columns; ++i) { data[i].column = std::move(columns[i]); } } void Block::set_columns(const Columns& columns) { /// TODO: assert if |columns| doesn't match |data|! size_t num_columns = data.size(); for (size_t i = 0; i < num_columns; ++i) { data[i].column = columns[i]; } } Block Block::clone_with_columns(MutableColumns&& columns) const { Block res; size_t num_columns = data.size(); for (size_t i = 0; i < num_columns; ++i) { res.insert({std::move(columns[i]), data[i].type, data[i].name}); } return res; } Block Block::clone_with_columns(const Columns& columns) const { Block res; size_t num_columns = data.size(); if (num_columns != columns.size()) { LOG(FATAL) << fmt::format( "Cannot clone block with columns because block has {} columns, but {} columns " "given.", num_columns, columns.size()); } for (size_t i = 0; i < num_columns; ++i) { res.insert({columns[i], data[i].type, data[i].name}); } return res; } Block Block::clone_without_columns() const { Block res; size_t num_columns = data.size(); for (size_t i = 0; i < num_columns; ++i) { res.insert({nullptr, data[i].type, data[i].name}); } return res; } Block Block::sort_columns() const { Block sorted_block; for (const auto& name : index_by_name) { sorted_block.insert(data[name.second]); } return sorted_block; } const ColumnsWithTypeAndName& Block::get_columns_with_type_and_name() const { return data; } Names Block::get_names() const { Names res; res.reserve(columns()); for (const auto& elem : data) { res.push_back(elem.name); } return res; } DataTypes Block::get_data_types() const { DataTypes res; res.reserve(columns()); for (const auto& elem : data) { res.push_back(elem.type); } return res; } void Block::clear() { info = BlockInfo(); data.clear(); index_by_name.clear(); } void Block::clear_column_data(int column_size) noexcept { // data.size() greater than column_size, means here have some // function exec result in block, need erase it here if (column_size != -1 and data.size() > column_size) { for (int i = data.size() - 1; i >= column_size; --i) { erase(i); } } for (auto& d : data) { DCHECK(d.column->use_count() == 1); (*std::move(d.column)).assume_mutable()->clear(); } } void Block::swap(Block& other) noexcept { std::swap(info, other.info); data.swap(other.data); index_by_name.swap(other.index_by_name); } void Block::swap(Block&& other) noexcept { clear(); data = std::move(other.data); initialize_index_by_name(); } void Block::update_hash(SipHash& hash) const { for (size_t row_no = 0, num_rows = rows(); row_no < num_rows; ++row_no) { for (const auto& col : data) { col.column->update_hash_with_value(row_no, hash); } } } void filter_block_internal(Block* block, const IColumn::Filter& filter, uint32_t column_to_keep) { auto count = count_bytes_in_filter(filter); if (count == 0) { for (size_t i = 0; i < column_to_keep; ++i) { std::move(*block->get_by_position(i).column).mutate()->clear(); } } else { if (count != block->rows()) { for (size_t i = 0; i < column_to_keep; ++i) { block->get_by_position(i).column = block->get_by_position(i).column->filter(filter, 0); } } } } Status Block::filter_block(Block* block, int filter_column_id, int column_to_keep) { ColumnPtr filter_column = block->get_by_position(filter_column_id).column; if (auto* nullable_column = check_and_get_column(*filter_column)) { ColumnPtr nested_column = nullable_column->get_nested_column_ptr(); MutableColumnPtr mutable_holder = nested_column->use_count() == 1 ? nested_column->assume_mutable() : nested_column->clone_resized(nested_column->size()); ColumnUInt8* concrete_column = typeid_cast(mutable_holder.get()); if (!concrete_column) { return Status::InvalidArgument( "Illegal type " + filter_column->get_name() + " of column for filter. Must be UInt8 or Nullable(UInt8)."); } auto* __restrict null_map = nullable_column->get_null_map_data().data(); IColumn::Filter& filter = concrete_column->get_data(); auto* __restrict filter_data = filter.data(); const size_t size = filter.size(); for (size_t i = 0; i < size; ++i) { filter_data[i] &= !null_map[i]; } filter_block_internal(block, filter, column_to_keep); } else if (auto* const_column = check_and_get_column(*filter_column)) { bool ret = const_column->get_bool(0); if (!ret) { for (size_t i = 0; i < column_to_keep; ++i) { std::move(*block->get_by_position(i).column).mutate()->clear(); } } } else { const IColumn::Filter& filter = assert_cast&>(*filter_column) .get_data(); filter_block_internal(block, filter, column_to_keep); } erase_useless_column(block, column_to_keep); return Status::OK(); } Status Block::serialize(PBlock* pblock, size_t* uncompressed_bytes, size_t* compressed_bytes, std::string* allocated_buf) const { // calc uncompressed size for allocation size_t content_uncompressed_size = 0; for (const auto& c : *this) { PColumnMeta* pcm = pblock->add_column_metas(); c.to_pb_column_meta(pcm); // get serialized size content_uncompressed_size += c.type->get_uncompressed_serialized_bytes(*(c.column)); } // serialize data values // when data type is HLL, content_uncompressed_size maybe larger than real size. allocated_buf->resize(content_uncompressed_size); char* buf = allocated_buf->data(); for (const auto& c : *this) { buf = c.type->serialize(*(c.column), buf); } *uncompressed_bytes = content_uncompressed_size; // compress if (config::compress_rowbatches && content_uncompressed_size > 0) { // Try compressing the content to compression_scratch, // swap if compressed data is smaller std::string compression_scratch; uint32_t max_compressed_size = snappy::MaxCompressedLength(content_uncompressed_size); compression_scratch.resize(max_compressed_size); size_t compressed_size = 0; char* compressed_output = compression_scratch.data(); snappy::RawCompress(allocated_buf->data(), content_uncompressed_size, compressed_output, &compressed_size); if (LIKELY(compressed_size < content_uncompressed_size)) { compression_scratch.resize(compressed_size); allocated_buf->swap(compression_scratch); pblock->set_compressed(true); *compressed_bytes = compressed_size; } else { *compressed_bytes = content_uncompressed_size; } VLOG_ROW << "uncompressed size: " << content_uncompressed_size << ", compressed size: " << compressed_size; } return Status::OK(); } void Block::serialize(RowBatch* output_batch, const RowDescriptor& row_desc) { auto num_rows = rows(); auto mem_pool = output_batch->tuple_data_pool(); for (int i = 0; i < num_rows; ++i) { auto tuple_row = output_batch->get_row(i); const auto& tuple_descs = row_desc.tuple_descriptors(); auto column_offset = 0; for (int j = 0; j < tuple_descs.size(); ++j) { auto tuple_desc = tuple_descs[j]; tuple_row->set_tuple(j, deep_copy_tuple(*tuple_desc, mem_pool, i, column_offset)); column_offset += tuple_desc->slots().size(); } output_batch->commit_last_row(); } } doris::Tuple* Block::deep_copy_tuple(const doris::TupleDescriptor& desc, MemPool* pool, int row, int column_offset, bool padding_char) { auto dst = reinterpret_cast(pool->allocate(desc.byte_size())); for (int i = 0; i < desc.slots().size(); ++i) { auto slot_desc = desc.slots()[i]; auto& type_desc = slot_desc->type(); const auto& column = get_by_position(column_offset + i).column; const auto& data_ref = type_desc.type != TYPE_ARRAY ? column->get_data_at(row) : StringRef(); bool is_null = is_column_data_null(slot_desc->type(), data_ref, column, row); if (is_null) { dst->set_null(slot_desc->null_indicator_offset()); } else { dst->set_not_null(slot_desc->null_indicator_offset()); deep_copy_slot(dst->get_slot(slot_desc->tuple_offset()), pool, type_desc, data_ref, column.get(), row, padding_char); } } return dst; } inline bool Block::is_column_data_null(const doris::TypeDescriptor& type_desc, const StringRef& data_ref, const IColumn* column, int row) { if (type_desc.type != TYPE_ARRAY) { return data_ref.data == nullptr; } else { Field array; column->get(row, array); return array.is_null(); } } // TODO: need to refactor this function, too long. void Block::deep_copy_slot(void* dst, MemPool* pool, const doris::TypeDescriptor& type_desc, const StringRef& data_ref, const IColumn* column, int row, bool padding_char) { if (type_desc.is_collection_type()) { if (type_desc.type != TYPE_ARRAY) { return; } Field field; column->get(row, field); const auto& array = field.get(); auto collection_value = reinterpret_cast(dst); auto item_type_desc = type_desc.children.front(); CollectionValue::init_collection(pool, array.size(), item_type_desc.type, collection_value); const ColumnArray* array_column = nullptr; if (is_column_nullable(*column)) { auto& nested_column = reinterpret_cast(column)->get_nested_column(); array_column = reinterpret_cast(&nested_column); } else { array_column = reinterpret_cast(column); } auto item_column = array_column->get_data_ptr().get(); auto offset = array_column->get_offsets()[row - 1]; for (int i = 0; i < collection_value->length(); ++i) { char* item_dst = reinterpret_cast(collection_value->mutable_data()) + i * item_type_desc.get_slot_size(); if (array[i].is_null()) { const auto& null_value = doris_udf::AnyVal(true); collection_value->set(i, item_type_desc.type, &null_value); } else { auto item_offset = offset + i; const auto& data_ref = item_type_desc.type != TYPE_ARRAY ? item_column->get_data_at(item_offset) : StringRef(); deep_copy_slot(item_dst, pool, item_type_desc, data_ref, item_column, item_offset, padding_char); } } } else if (type_desc.is_date_type()) { VecDateTimeValue ts = *reinterpret_cast(data_ref.data); DateTimeValue dt; ts.convert_vec_dt_to_dt(&dt); memcpy(dst, &dt, sizeof(DateTimeValue)); } else if (type_desc.type == TYPE_OBJECT) { auto bitmap_value = (BitmapValue*)(data_ref.data); auto size = bitmap_value->getSizeInBytes(); // serialize the content of string auto string_slot = reinterpret_cast(dst); string_slot->ptr = reinterpret_cast(pool->allocate(size)); bitmap_value->write(string_slot->ptr); string_slot->len = size; } else if (type_desc.type == TYPE_HLL) { auto hll_value = (HyperLogLog*)(data_ref.data); auto size = hll_value->max_serialized_size(); auto string_slot = reinterpret_cast(dst); string_slot->ptr = reinterpret_cast(pool->allocate(size)); size_t actual_size = hll_value->serialize((uint8_t*)string_slot->ptr); string_slot->len = actual_size; } else if (type_desc.is_string_type()) { // TYPE_OBJECT and TYPE_HLL must be handled before. memcpy(dst, (const void*)(&data_ref), sizeof(data_ref)); // Copy the content of string if (padding_char && type_desc.type == TYPE_CHAR) { // serialize the content of string auto string_slot = reinterpret_cast(dst); string_slot->ptr = reinterpret_cast(pool->allocate(type_desc.len)); string_slot->len = type_desc.len; memset(string_slot->ptr, 0, type_desc.len); memcpy(string_slot->ptr, data_ref.data, data_ref.size); } else { auto str_ptr = pool->allocate(data_ref.size); memcpy(str_ptr, data_ref.data, data_ref.size); auto string_slot = reinterpret_cast(dst); string_slot->ptr = reinterpret_cast(str_ptr); string_slot->len = data_ref.size; } } else { memcpy(dst, data_ref.data, data_ref.size); } } MutableBlock::MutableBlock(const std::vector& tuple_descs) { for (auto tuple_desc : tuple_descs) { for (auto slot_desc : tuple_desc->slots()) { _data_types.emplace_back(slot_desc->get_data_type_ptr()); _columns.emplace_back(_data_types.back()->create_column()); } } } size_t MutableBlock::rows() const { for (const auto& column : _columns) { if (column) { return column->size(); } } return 0; } void MutableBlock::add_row(const Block* block, int row) { auto& block_data = block->get_columns_with_type_and_name(); for (size_t i = 0; i < _columns.size(); ++i) { _columns[i]->insert_from(*block_data[i].column.get(), row); } } void MutableBlock::add_rows(const Block* block, const int* row_begin, const int* row_end) { auto& block_data = block->get_columns_with_type_and_name(); for (size_t i = 0; i < _columns.size(); ++i) { auto& dst = _columns[i]; auto& src = *block_data[i].column.get(); dst->insert_indices_from(src, row_begin, row_end); } } Block MutableBlock::to_block(int start_column) { return to_block(start_column, _columns.size()); } Block MutableBlock::to_block(int start_column, int end_column) { ColumnsWithTypeAndName columns_with_schema; for (size_t i = start_column; i < end_column; ++i) { columns_with_schema.emplace_back(std::move(_columns[i]), _data_types[i], ""); } return {columns_with_schema}; } std::string MutableBlock::dump_data(size_t row_limit) const { if (rows() == 0) { return "empty block."; } std::vector headers; std::vector headers_size; for (size_t i = 0; i < columns(); ++i) { std::string s = _data_types[i]->get_name(); headers_size.push_back(s.size() > 15 ? s.size() : 15); headers.emplace_back(s); } std::stringstream out; // header upper line auto line = [&]() { for (size_t i = 0; i < columns(); ++i) { out << std::setfill('-') << std::setw(1) << "+" << std::setw(headers_size[i]) << "-"; } out << std::setw(1) << "+" << std::endl; }; line(); // header text for (size_t i = 0; i < columns(); ++i) { out << std::setfill(' ') << std::setw(1) << "|" << std::left << std::setw(headers_size[i]) << headers[i]; } out << std::setw(1) << "|" << std::endl; // header bottom line line(); // content for (size_t row_num = 0; row_num < rows() && row_num < row_limit; ++row_num) { for (size_t i = 0; i < columns(); ++i) { std::string s = _data_types[i]->to_string(*_columns[i].get(), row_num); if (s.length() > headers_size[i]) { s = s.substr(0, headers_size[i] - 3) + "..."; } out << std::setfill(' ') << std::setw(1) << "|" << std::setw(headers_size[i]) << std::right << s; } out << std::setw(1) << "|" << std::endl; } // bottom line line(); if (row_limit < rows()) { out << rows() << " rows in block, only show first " << row_limit << " rows." << std::endl; } return out.str(); } std::unique_ptr Block::create_same_struct_block(size_t size) const { auto temp_block = std::make_unique(); for (const auto& d : data) { auto column = d.type->create_column(); column->resize(size); temp_block->insert({std::move(column), d.type, d.name}); } return temp_block; } void Block::shrink_char_type_column_suffix_zero(const std::vector& char_type_idx) { for (auto idx : char_type_idx) { if (idx < data.size()) { if (this->get_by_position(idx).column->is_nullable()) { this->get_by_position(idx).column = ColumnNullable::create( reinterpret_cast( reinterpret_cast( this->get_by_position(idx).column.get()) ->get_nested_column_ptr() .get()) ->get_shinked_column(), reinterpret_cast(this->get_by_position(idx).column.get()) ->get_null_map_column_ptr()); } else { this->get_by_position(idx).column = reinterpret_cast(this->get_by_position(idx).column.get()) ->get_shinked_column(); } } } } } // namespace doris::vectorized