// Modifications copyright (C) 2017, Baidu.com, Inc. // Copyright 2017 The Apache Software Foundation // Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "exec/exec_node.h" #include #include #include #include "codegen/llvm_codegen.h" #include "codegen/codegen_anyval.h" #include "common/object_pool.h" #include "common/status.h" #include "exprs/expr_context.h" #include "exec/aggregation_node.h" #include "exec/partitioned_aggregation_node.h" #include "exec/csv_scan_node.h" #include "exec/pre_aggregation_node.h" #include "exec/hash_join_node.h" #include "exec/broker_scan_node.h" #include "exec/cross_join_node.h" #include "exec/empty_set_node.h" #include "exec/mysql_scan_node.h" #include "exec/schema_scan_node.h" #include "exec/exchange_node.h" #include "exec/merge_join_node.h" #include "exec/merge_node.h" #include "exec/olap_rewrite_node.h" #include "exec/olap_scan_node.h" #include "exec/topn_node.h" #include "exec/sort_node.h" #include "exec/spill_sort_node.h" #include "exec/analytic_eval_node.h" #include "exec/select_node.h" #include "exec/union_node.h" #include "runtime/descriptors.h" #include "runtime/mem_pool.h" #include "runtime/mem_tracker.h" #include "runtime/row_batch.h" #include "runtime/runtime_state.h" #include "util/debug_util.h" #include "util/runtime_profile.h" using llvm::Function; using llvm::PointerType; using llvm::Type; using llvm::Value; using llvm::LLVMContext; using llvm::BasicBlock; namespace palo { const std::string ExecNode::ROW_THROUGHPUT_COUNTER = "RowsReturnedRate"; int ExecNode::get_node_id_from_profile(RuntimeProfile* p) { return p->metadata(); } ExecNode::RowBatchQueue::RowBatchQueue(int max_batches) : BlockingQueue(max_batches) { } ExecNode::RowBatchQueue::~RowBatchQueue() { DCHECK(cleanup_queue_.empty()); } void ExecNode::RowBatchQueue::AddBatch(RowBatch* batch) { if (!blocking_put(batch)) { std::lock_guard lock(lock_); cleanup_queue_.push_back(batch); } } bool ExecNode::RowBatchQueue::AddBatchWithTimeout(RowBatch* batch, int64_t timeout_micros) { // return blocking_put_with_timeout(batch, timeout_micros); return blocking_put(batch); } RowBatch* ExecNode::RowBatchQueue::GetBatch() { RowBatch* result = NULL; if (blocking_get(&result)) return result; return NULL; } int ExecNode::RowBatchQueue::Cleanup() { int num_io_buffers = 0; // RowBatch* batch = NULL; // while ((batch = GetBatch()) != NULL) { // num_io_buffers += batch->num_io_buffers(); // delete batch; // } lock_guard l(lock_); for (std::list::iterator it = cleanup_queue_.begin(); it != cleanup_queue_.end(); ++it) { // num_io_buffers += (*it)->num_io_buffers(); delete *it; } cleanup_queue_.clear(); return num_io_buffers; } ExecNode::ExecNode(ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs) : _id(tnode.node_id), _type(tnode.node_type), _pool(pool), _tuple_ids(tnode.row_tuples), _row_descriptor(descs, tnode.row_tuples, tnode.nullable_tuples), _debug_phase(TExecNodePhase::INVALID), _debug_action(TDebugAction::WAIT), _limit(tnode.limit), _num_rows_returned(0), _rows_returned_counter(NULL), _rows_returned_rate(NULL), _memory_used_counter(NULL), _is_closed(false){ init_runtime_profile(print_plan_node_type(tnode.node_type)); } ExecNode::~ExecNode() { } void ExecNode::push_down_predicate( RuntimeState* state, std::list* expr_ctxs) { for (int i = 0; i < _children.size(); ++i) { _children[i]->push_down_predicate(state, expr_ctxs); if (expr_ctxs->size() == 0) { return; } } std::list::iterator iter = expr_ctxs->begin(); while (iter != expr_ctxs->end()) { if ((*iter)->root()->is_bound(&_tuple_ids)) { // LOG(INFO) << "push down success expr is " << (*iter)->debug_string() // << " and node is " << debug_string(); (*iter)->prepare(state, row_desc(), _expr_mem_tracker.get()); (*iter)->open(state); _conjunct_ctxs.push_back(*iter); iter = expr_ctxs->erase(iter); } else { ++iter; } } } Status ExecNode::init(const TPlanNode& tnode) { RETURN_IF_ERROR( Expr::create_expr_trees(_pool, tnode.conjuncts, &_conjunct_ctxs)); return Status::OK; } Status ExecNode::prepare(RuntimeState* state) { RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::PREPARE)); DCHECK(_runtime_profile.get() != NULL); _rows_returned_counter = ADD_COUNTER(_runtime_profile, "RowsReturned", TUnit::UNIT); _memory_used_counter = ADD_COUNTER(_runtime_profile, "MemoryUsed", TUnit::BYTES); _rows_returned_rate = runtime_profile()->add_derived_counter( ROW_THROUGHPUT_COUNTER, TUnit::UNIT_PER_SECOND, boost::bind(&RuntimeProfile::units_per_second, _rows_returned_counter, runtime_profile()->total_time_counter()), ""); _mem_tracker.reset(new MemTracker(-1, _runtime_profile->name(), state->instance_mem_tracker())); _expr_mem_tracker.reset(new MemTracker(-1, "Exprs", _mem_tracker.get())); RETURN_IF_ERROR(Expr::prepare(_conjunct_ctxs, state, row_desc(), expr_mem_tracker())); // TODO(zc): // AddExprCtxsToFree(_conjunct_ctxs); for (int i = 0; i < _children.size(); ++i) { RETURN_IF_ERROR(_children[i]->prepare(state)); } return Status::OK; } Status ExecNode::open(RuntimeState* state) { RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::OPEN)); return Expr::open(_conjunct_ctxs, state); } Status ExecNode::close(RuntimeState* state) { if (_is_closed) { return Status::OK; } _is_closed = true; RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::CLOSE)); if (_rows_returned_counter != NULL) { COUNTER_SET(_rows_returned_counter, _num_rows_returned); } Status result; for (int i = 0; i < _children.size(); ++i) { result.add_error(_children[i]->close(state)); } Expr::close(_conjunct_ctxs, state); return result; } void ExecNode::add_runtime_exec_option(const std::string& str) { lock_guard l(_exec_options_lock); if (_runtime_exec_options.empty()) { _runtime_exec_options = str; } else { _runtime_exec_options.append(", "); _runtime_exec_options.append(str); } runtime_profile()->add_info_string("ExecOption", _runtime_exec_options); } Status ExecNode::create_tree(ObjectPool* pool, const TPlan& plan, const DescriptorTbl& descs, ExecNode** root) { if (plan.nodes.size() == 0) { *root = NULL; return Status::OK; } int node_idx = 0; RETURN_IF_ERROR(create_tree_helper(pool, plan.nodes, descs, NULL, &node_idx, root)); if (node_idx + 1 != plan.nodes.size()) { // TODO: print thrift msg for diagnostic purposes. return Status( "Plan tree only partially reconstructed. Not all thrift nodes were used."); } return Status::OK; } Status ExecNode::create_tree_helper( ObjectPool* pool, const vector& tnodes, const DescriptorTbl& descs, ExecNode* parent, int* node_idx, ExecNode** root) { // propagate error case if (*node_idx >= tnodes.size()) { // TODO: print thrift msg return Status("Failed to reconstruct plan tree from thrift."); } const TPlanNode& tnode = tnodes[*node_idx]; int num_children = tnodes[*node_idx].num_children; ExecNode* node = NULL; RETURN_IF_ERROR(create_node(pool, tnodes[*node_idx], descs, &node)); // assert(parent != NULL || (node_idx == 0 && root_expr != NULL)); if (parent != NULL) { parent->_children.push_back(node); } else { *root = node; } for (int i = 0; i < num_children; i++) { ++*node_idx; RETURN_IF_ERROR(create_tree_helper(pool, tnodes, descs, node, node_idx, NULL)); // we are expecting a child, but have used all nodes // this means we have been given a bad tree and must fail if (*node_idx >= tnodes.size()) { // TODO: print thrift msg return Status("Failed to reconstruct plan tree from thrift."); } } RETURN_IF_ERROR(node->init(tnode)); // build up tree of profiles; add children >0 first, so that when we print // the profile, child 0 is printed last (makes the output more readable) for (int i = 1; i < node->_children.size(); ++i) { node->runtime_profile()->add_child(node->_children[i]->runtime_profile(), true, NULL); } if (!node->_children.empty()) { node->runtime_profile()->add_child(node->_children[0]->runtime_profile(), false, NULL); } return Status::OK; } Status ExecNode::create_node(ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs, ExecNode** node) { std::stringstream error_msg; switch (tnode.node_type) { VLOG(2) << "tnode:\n" << apache::thrift::ThriftDebugString(tnode); case TPlanNodeType::CSV_SCAN_NODE: *node = pool->add(new CsvScanNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::MYSQL_SCAN_NODE: *node = pool->add(new MysqlScanNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::SCHEMA_SCAN_NODE: *node = pool->add(new SchemaScanNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::OLAP_SCAN_NODE: *node = pool->add(new OlapScanNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::AGGREGATION_NODE: if (config::enable_partitioned_aggregation) { *node = pool->add(new PartitionedAggregationNode(pool, tnode, descs)); } else { *node = pool->add(new AggregationNode(pool, tnode, descs)); } return Status::OK; /*case TPlanNodeType::PRE_AGGREGATION_NODE: *node = pool->add(new PreAggregationNode(pool, tnode, descs)); return Status::OK;*/ case TPlanNodeType::HASH_JOIN_NODE: *node = pool->add(new HashJoinNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::CROSS_JOIN_NODE: *node = pool->add(new CrossJoinNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::MERGE_JOIN_NODE: *node = pool->add(new MergeJoinNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::EMPTY_SET_NODE: *node = pool->add(new EmptySetNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::EXCHANGE_NODE: *node = pool->add(new ExchangeNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::SELECT_NODE: *node = pool->add(new SelectNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::OLAP_REWRITE_NODE: *node = pool->add(new OlapRewriteNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::SORT_NODE: if (tnode.sort_node.use_top_n) { *node = pool->add(new TopNNode(pool, tnode, descs)); } else { *node = pool->add(new SpillSortNode(pool, tnode, descs)); } return Status::OK; case TPlanNodeType::ANALYTIC_EVAL_NODE: *node = pool->add(new AnalyticEvalNode(pool, tnode, descs)); break; case TPlanNodeType::MERGE_NODE: *node = pool->add(new MergeNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::UNION_NODE: *node = pool->add(new UnionNode(pool, tnode, descs)); return Status::OK; case TPlanNodeType::BROKER_SCAN_NODE: *node = pool->add(new BrokerScanNode(pool, tnode, descs)); return Status::OK; default: map::const_iterator i = _TPlanNodeType_VALUES_TO_NAMES.find(tnode.node_type); const char* str = "unknown node type"; if (i != _TPlanNodeType_VALUES_TO_NAMES.end()) { str = i->second; } error_msg << str << " not implemented"; return Status(error_msg.str()); } return Status::OK; } void ExecNode::set_debug_options( int node_id, TExecNodePhase::type phase, TDebugAction::type action, ExecNode* root) { if (root->_id == node_id) { root->_debug_phase = phase; root->_debug_action = action; return; } for (int i = 0; i < root->_children.size(); ++i) { set_debug_options(node_id, phase, action, root->_children[i]); } } std::string ExecNode::debug_string() const { std::stringstream out; this->debug_string(0, &out); return out.str(); } void ExecNode::debug_string(int indentation_level, std::stringstream* out) const { *out << " conjuncts=" << Expr::debug_string(_conjuncts); *out << " id=" << _id; *out << " type=" << print_plan_node_type(_type); *out << " tuple_ids=["; for (auto id : _tuple_ids) { *out << id << ", "; } *out << "]"; for (int i = 0; i < _children.size(); ++i) { *out << "\n"; _children[i]->debug_string(indentation_level + 1, out); } } bool ExecNode::eval_conjuncts(ExprContext* const* ctxs, int num_ctxs, TupleRow* row) { for (int i = 0; i < num_ctxs; ++i) { BooleanVal v = ctxs[i]->get_boolean_val(row); if (v.is_null || !v.val) { return false; } } return true; } void ExecNode::collect_nodes(TPlanNodeType::type node_type, vector* nodes) { if (_type == node_type) { nodes->push_back(this); } for (int i = 0; i < _children.size(); ++i) { _children[i]->collect_nodes(node_type, nodes); } } void ExecNode::collect_scan_nodes(vector* nodes) { collect_nodes(TPlanNodeType::OLAP_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::BROKER_SCAN_NODE, nodes); } void ExecNode::init_runtime_profile(const std::string& name) { std::stringstream ss; ss << name << " (id=" << _id << ")"; _runtime_profile.reset(new RuntimeProfile(_pool, ss.str())); _runtime_profile->set_metadata(_id); } Status ExecNode::exec_debug_action(TExecNodePhase::type phase) { DCHECK(phase != TExecNodePhase::INVALID); if (_debug_phase != phase) { return Status::OK; } if (_debug_action == TDebugAction::FAIL) { return Status(TStatusCode::INTERNAL_ERROR, "Debug Action: FAIL"); } if (_debug_action == TDebugAction::WAIT) { while (true) { sleep(1); } } return Status::OK; } // Codegen for EvalConjuncts. The generated signature is // For a node with two conjunct predicates // define i1 @EvalConjuncts(%"class.impala::ExprContext"** %ctxs, i32 %num_ctxs, // %"class.impala::TupleRow"* %row) #20 { // entry: // %ctx_ptr = getelementptr %"class.impala::ExprContext"** %ctxs, i32 0 // %ctx = load %"class.impala::ExprContext"** %ctx_ptr // %result = call i16 @Eq_StringVal_StringValWrapper3( // %"class.impala::ExprContext"* %ctx, %"class.impala::TupleRow"* %row) // %is_null = trunc i16 %result to i1 // %0 = ashr i16 %result, 8 // %1 = trunc i16 %0 to i8 // %val = trunc i8 %1 to i1 // %is_false = xor i1 %val, true // %return_false = or i1 %is_null, %is_false // br i1 %return_false, label %false, label %continue // // continue: ; preds = %entry // %ctx_ptr2 = getelementptr %"class.impala::ExprContext"** %ctxs, i32 1 // %ctx3 = load %"class.impala::ExprContext"** %ctx_ptr2 // %result4 = call i16 @Gt_BigIntVal_BigIntValWrapper5( // %"class.impala::ExprContext"* %ctx3, %"class.impala::TupleRow"* %row) // %is_null5 = trunc i16 %result4 to i1 // %2 = ashr i16 %result4, 8 // %3 = trunc i16 %2 to i8 // %val6 = trunc i8 %3 to i1 // %is_false7 = xor i1 %val6, true // %return_false8 = or i1 %is_null5, %is_false7 // br i1 %return_false8, label %false, label %continue1 // // continue1: ; preds = %continue // ret i1 true // // false: ; preds = %continue, %entry // ret i1 false // } Function* ExecNode::codegen_eval_conjuncts( RuntimeState* state, const std::vector& conjunct_ctxs, const char* name) { Function* conjunct_fns[conjunct_ctxs.size()]; for (int i = 0; i < conjunct_ctxs.size(); ++i) { Status status = conjunct_ctxs[i]->root()->get_codegend_compute_fn(state, &conjunct_fns[i]); if (!status.ok()) { VLOG_QUERY << "Could not codegen EvalConjuncts: " << status.get_error_msg(); return NULL; } } LlvmCodeGen* codegen = NULL; if (!state->get_codegen(&codegen).ok()) { return NULL; } // Construct function signature to match // bool EvalConjuncts(Expr** exprs, int num_exprs, TupleRow* row) Type* tuple_row_type = codegen->get_type(TupleRow::_s_llvm_class_name); Type* expr_ctx_type = codegen->get_type(ExprContext::_s_llvm_class_name); DCHECK(tuple_row_type != NULL); DCHECK(expr_ctx_type != NULL); PointerType* tuple_row_ptr_type = PointerType::get(tuple_row_type, 0); PointerType* expr_ctx_ptr_type = PointerType::get(expr_ctx_type, 0); LlvmCodeGen::FnPrototype prototype(codegen, name, codegen->get_type(TYPE_BOOLEAN)); prototype.add_argument( LlvmCodeGen::NamedVariable("ctxs", PointerType::get(expr_ctx_ptr_type, 0))); prototype.add_argument( LlvmCodeGen::NamedVariable("num_ctxs", codegen->get_type(TYPE_INT))); prototype.add_argument(LlvmCodeGen::NamedVariable("row", tuple_row_ptr_type)); LlvmCodeGen::LlvmBuilder builder(codegen->context()); Value* args[3]; Function* fn = prototype.generate_prototype(&builder, args); Value* ctxs_arg = args[0]; Value* tuple_row_arg = args[2]; if (conjunct_ctxs.size() > 0) { LLVMContext& context = codegen->context(); BasicBlock* false_block = BasicBlock::Create(context, "false", fn); for (int i = 0; i < conjunct_ctxs.size(); ++i) { BasicBlock* true_block = BasicBlock::Create(context, "continue", fn, false_block); Value* ctx_arg_ptr = builder.CreateConstGEP1_32(ctxs_arg, i, "ctx_ptr"); Value* ctx_arg = builder.CreateLoad(ctx_arg_ptr, "ctx"); Value* expr_args[] = { ctx_arg, tuple_row_arg }; // Call conjunct_fns[i] CodegenAnyVal result = CodegenAnyVal::create_call_wrapped( codegen, &builder, conjunct_ctxs[i]->root()->type(), conjunct_fns[i], expr_args, "result", NULL); // Return false if result.is_null || !result Value* is_null = result.get_is_null(); Value* is_false = builder.CreateNot(result.get_val(), "is_false"); Value* return_false = builder.CreateOr(is_null, is_false, "return_false"); builder.CreateCondBr(return_false, false_block, true_block); // Set insertion point for continue/end builder.SetInsertPoint(true_block); } builder.CreateRet(codegen->true_value()); builder.SetInsertPoint(false_block); builder.CreateRet(codegen->false_value()); } else { builder.CreateRet(codegen->true_value()); } return codegen->finalize_function(fn); } }