// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. #include "exec/blocking_join_node.h" #include #include "exprs/expr.h" #include "runtime/row_batch.h" #include "runtime/runtime_state.h" #include "util/runtime_profile.h" #include "gen_cpp/PlanNodes_types.h" namespace doris { const char* BlockingJoinNode::LLVM_CLASS_NAME = "class.doris::BlockingJoinNode"; BlockingJoinNode::BlockingJoinNode(const std::string& node_name, const TJoinOp::type join_op, ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs) : ExecNode(pool, tnode, descs), _node_name(node_name), _join_op(join_op) { } Status BlockingJoinNode::init(const TPlanNode& tnode, RuntimeState* state) { return ExecNode::init(tnode, state); } BlockingJoinNode::~BlockingJoinNode() { // _left_batch must be cleaned up in close() to ensure proper resource freeing. DCHECK(_left_batch == NULL); } Status BlockingJoinNode::prepare(RuntimeState* state) { SCOPED_TIMER(_runtime_profile->total_time_counter()); RETURN_IF_ERROR(ExecNode::prepare(state)); _build_pool.reset(new MemPool(mem_tracker())); _build_timer = ADD_TIMER(runtime_profile(), "BuildTime"); _left_child_timer = ADD_TIMER(runtime_profile(), "LeftChildTime"); _build_row_counter = ADD_COUNTER(runtime_profile(), "BuildRows", TUnit::UNIT); _left_child_row_counter = ADD_COUNTER(runtime_profile(), "LeftChildRows", TUnit::UNIT); _result_tuple_row_size = _row_descriptor.tuple_descriptors().size() * sizeof(Tuple*); // pre-compute the tuple index of build tuples in the output row int num_left_tuples = child(0)->row_desc().tuple_descriptors().size(); int num_build_tuples = child(1)->row_desc().tuple_descriptors().size(); _build_tuple_size = num_build_tuples; _build_tuple_idx.reserve(_build_tuple_size); for (int i = 0; i < _build_tuple_size; ++i) { TupleDescriptor* build_tuple_desc = child(1)->row_desc().tuple_descriptors()[i]; _build_tuple_idx.push_back(_row_descriptor.get_tuple_idx(build_tuple_desc->id())); } _probe_tuple_row_size = num_left_tuples * sizeof(Tuple*); _build_tuple_row_size = num_build_tuples * sizeof(Tuple*); _left_batch.reset(new RowBatch(child(0)->row_desc(), state->batch_size(), mem_tracker())); return Status::OK(); } Status BlockingJoinNode::close(RuntimeState* state) { // TODO(zhaochun): avoid double close // if (is_closed()) return Status::OK(); _left_batch.reset(); ExecNode::close(state); return Status::OK(); } void BlockingJoinNode::build_side_thread(RuntimeState* state, boost::promise* status) { status->set_value(construct_build_side(state)); // Release the thread token as soon as possible (before the main thread joins // on it). This way, if we had a chain of 10 joins using 1 additional thread, // we'd keep the additional thread busy the whole time. state->resource_pool()->release_thread_token(false); } Status BlockingJoinNode::open(RuntimeState* state) { RETURN_IF_ERROR(ExecNode::open(state)); SCOPED_TIMER(_runtime_profile->total_time_counter()); // RETURN_IF_ERROR(Expr::open(_conjuncts, state)); RETURN_IF_CANCELLED(state); // TODO(zhaochun) // RETURN_IF_ERROR(state->check_query_state()); _eos = false; // Kick-off the construction of the build-side table in a separate // thread, so that the left child can do any initialisation in parallel. // Only do this if we can get a thread token. Otherwise, do this in the // main thread boost::promise build_side_status; if (state->resource_pool()->try_acquire_thread_token()) { add_runtime_exec_option("Join Build-Side Prepared Asynchronously"); // Thread build_thread(_node_name, "build thread", // bind(&BlockingJoinNode::BuildSideThread, this, state, &build_side_status)); // if (!state->cgroup().empty()) { // RETURN_IF_ERROR( // state->exec_env()->cgroups_mgr()->assign_thread_to_cgroup( // build_thread, state->cgroup())); // } boost::thread(bind(&BlockingJoinNode::build_side_thread, this, state, &build_side_status)); } else { build_side_status.set_value(construct_build_side(state)); } // Open the left child so that it may perform any initialisation in parallel. // Don't exit even if we see an error, we still need to wait for the build thread // to finish. Status open_status = child(0)->open(state); // Blocks until ConstructBuildSide has returned, after which the build side structures // are fully constructed. RETURN_IF_ERROR(build_side_status.get_future().get()); // We can close the right child to release its resources because its input has been // fully consumed. child(1)->close(state); RETURN_IF_ERROR(open_status); // Seed left child in preparation for get_next(). while (true) { RETURN_IF_ERROR(child(0)->get_next(state, _left_batch.get(), &_left_side_eos)); COUNTER_UPDATE(_left_child_row_counter, _left_batch->num_rows()); _left_batch_pos = 0; if (_left_batch->num_rows() == 0) { if (_left_side_eos) { init_get_next(NULL /* eos */); _eos = true; break; } _left_batch->reset(); continue; } else { _current_left_child_row = _left_batch->get_row(_left_batch_pos++); init_get_next(_current_left_child_row); break; } } return Status::OK(); } void BlockingJoinNode::debug_string(int indentation_level, std::stringstream* out) const { *out << std::string(indentation_level * 2, ' '); *out << _node_name; *out << "(eos=" << (_eos ? "true" : "false") << " left_batch_pos=" << _left_batch_pos; add_to_debug_string(indentation_level, out); ExecNode::debug_string(indentation_level, out); *out << ")"; } std::string BlockingJoinNode::get_left_child_row_string(TupleRow* row) { std::stringstream out; out << "["; int* _build_tuple_idx_ptr = &_build_tuple_idx[0]; for (int i = 0; i < row_desc().tuple_descriptors().size(); ++i) { if (i != 0) { out << " "; } int* is_build_tuple = std::find(_build_tuple_idx_ptr, _build_tuple_idx_ptr + _build_tuple_size, i); if (is_build_tuple != _build_tuple_idx_ptr + _build_tuple_size) { out << Tuple::to_string(NULL, *row_desc().tuple_descriptors()[i]); } else { out << Tuple::to_string(row->get_tuple(i), *row_desc().tuple_descriptors()[i]); } } out << "]"; return out.str(); } // This function is replaced by codegen void BlockingJoinNode::create_output_row(TupleRow* out, TupleRow* left, TupleRow* build) { uint8_t* out_ptr = reinterpret_cast(out); if (left == NULL) { memset(out_ptr, 0, _probe_tuple_row_size); } else { memcpy(out_ptr, left, _probe_tuple_row_size); } if (build == NULL) { memset(out_ptr + _probe_tuple_row_size, 0, _build_tuple_row_size); } else { memcpy(out_ptr + _probe_tuple_row_size, build, _build_tuple_row_size); } } }