// Licensed to the Apache Software Foundation (ASF) under one // or more contributor license agreements. See the NOTICE file // distributed with this work for additional information // regarding copyright ownership. The ASF licenses this file // to you under the Apache License, Version 2.0 (the // "License"); you may not use this file except in compliance // with the License. You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, // software distributed under the License is distributed on an // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the License for the // specific language governing permissions and limitations // under the License. // This file is copied from // https://github.com/apache/impala/blob/branch-2.9.0/be/src/exec/exec-node.cpp // and modified by Doris #include "exec/exec_node.h" #include #include #include #include #include #include #include #include "common/compiler_util.h" // IWYU pragma: keep #include "common/config.h" #include "common/logging.h" #include "common/object_pool.h" #include "common/status.h" #include "exec/scan_node.h" #include "runtime/descriptors.h" #include "runtime/memory/mem_tracker.h" #include "runtime/runtime_state.h" #include "util/debug_util.h" #include "util/runtime_profile.h" #include "util/uid_util.h" #include "vec/columns/column_nullable.h" #include "vec/core/block.h" #include "vec/exec/distinct_vaggregation_node.h" #include "vec/exec/join/vhash_join_node.h" #include "vec/exec/join/vnested_loop_join_node.h" #include "vec/exec/scan/group_commit_scan_node.h" #include "vec/exec/scan/new_es_scan_node.h" #include "vec/exec/scan/new_file_scan_node.h" #include "vec/exec/scan/new_jdbc_scan_node.h" #include "vec/exec/scan/new_odbc_scan_node.h" #include "vec/exec/scan/new_olap_scan_node.h" #include "vec/exec/scan/vmeta_scan_node.h" #include "vec/exec/scan/vscan_node.h" #include "vec/exec/vaggregation_node.h" #include "vec/exec/vanalytic_eval_node.h" #include "vec/exec/vassert_num_rows_node.h" #include "vec/exec/vdata_gen_scan_node.h" #include "vec/exec/vempty_set_node.h" #include "vec/exec/vexchange_node.h" #include "vec/exec/vmysql_scan_node.h" // IWYU pragma: keep #include "vec/exec/vpartition_sort_node.h" #include "vec/exec/vrepeat_node.h" #include "vec/exec/vschema_scan_node.h" #include "vec/exec/vselect_node.h" #include "vec/exec/vset_operation_node.h" #include "vec/exec/vsort_node.h" #include "vec/exec/vtable_function_node.h" #include "vec/exec/vunion_node.h" #include "vec/exprs/vexpr.h" #include "vec/exprs/vexpr_context.h" #include "vec/utils/util.hpp" namespace doris { const std::string ExecNode::ROW_THROUGHPUT_COUNTER = "RowsProducedRate"; ExecNode::ExecNode(ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs) : _id(tnode.node_id), _type(tnode.node_type), _pool(pool), _tuple_ids(tnode.row_tuples), _row_descriptor(descs, tnode.row_tuples, tnode.nullable_tuples), _resource_profile(tnode.resource_profile), _limit(tnode.limit) { if (tnode.__isset.output_tuple_id) { _output_row_descriptor = std::make_unique( descs, std::vector {tnode.output_tuple_id}, std::vector {true}); } if (!tnode.intermediate_output_tuple_id_list.empty()) { DCHECK(tnode.__isset.output_tuple_id) << " no final output tuple id"; // common subexpression elimination DCHECK_EQ(tnode.intermediate_output_tuple_id_list.size(), tnode.intermediate_projections_list.size()); _intermediate_output_row_descriptor.reserve(tnode.intermediate_output_tuple_id_list.size()); for (auto output_tuple_id : tnode.intermediate_output_tuple_id_list) { _intermediate_output_row_descriptor.push_back( RowDescriptor(descs, std::vector {output_tuple_id}, std::vector {true})); } } _query_statistics = std::make_shared(); } ExecNode::~ExecNode() = default; Status ExecNode::init(const TPlanNode& tnode, RuntimeState* state) { init_runtime_profile(get_name()); if (tnode.__isset.vconjunct) { vectorized::VExprContextSPtr context; RETURN_IF_ERROR(vectorized::VExpr::create_expr_tree(tnode.vconjunct, context)); _conjuncts.emplace_back(context); } else if (tnode.__isset.conjuncts) { for (const auto& conjunct : tnode.conjuncts) { vectorized::VExprContextSPtr context; RETURN_IF_ERROR(vectorized::VExpr::create_expr_tree(conjunct, context)); _conjuncts.emplace_back(context); } } // create the projections expr if (tnode.__isset.projections) { DCHECK(tnode.__isset.output_tuple_id); RETURN_IF_ERROR(vectorized::VExpr::create_expr_trees(tnode.projections, _projections)); } if (!tnode.intermediate_projections_list.empty()) { DCHECK(tnode.__isset.projections) << "no final projections"; _intermediate_projections.reserve(tnode.intermediate_projections_list.size()); for (const auto& tnode_projections : tnode.intermediate_projections_list) { vectorized::VExprContextSPtrs projections; RETURN_IF_ERROR(vectorized::VExpr::create_expr_trees(tnode_projections, projections)); _intermediate_projections.push_back(projections); } } return Status::OK(); } Status ExecNode::prepare(RuntimeState* state) { DCHECK(_runtime_profile.get() != nullptr); _exec_timer = ADD_TIMER_WITH_LEVEL(runtime_profile(), "ExecTime", 1); _rows_returned_counter = ADD_COUNTER_WITH_LEVEL(_runtime_profile, "RowsProduced", TUnit::UNIT, 1); _output_bytes_counter = ADD_COUNTER_WITH_LEVEL(_runtime_profile, "BytesProduced", TUnit::BYTES, 1); _block_count_counter = ADD_COUNTER_WITH_LEVEL(_runtime_profile, "BlocksProduced", TUnit::UNIT, 1); _projection_timer = ADD_TIMER(_runtime_profile, "ProjectionTime"); _rows_returned_rate = runtime_profile()->add_derived_counter( ROW_THROUGHPUT_COUNTER, TUnit::UNIT_PER_SECOND, [this, capture0 = runtime_profile()->total_time_counter()] { return RuntimeProfile::units_per_second(_rows_returned_counter, capture0); }, ""); _memory_used_counter = ADD_LABEL_COUNTER(runtime_profile(), "MemoryUsage"); _peak_memory_usage_counter = _runtime_profile->AddHighWaterMarkCounter( "PeakMemoryUsage", TUnit::BYTES, "MemoryUsage"); _mem_tracker = std::make_unique("ExecNode:" + _runtime_profile->name()); for (auto& conjunct : _conjuncts) { RETURN_IF_ERROR(conjunct->prepare(state, intermediate_row_desc())); } for (int i = 0; i < _intermediate_projections.size(); i++) { RETURN_IF_ERROR(vectorized::VExpr::prepare(_intermediate_projections[i], state, intermediate_row_desc(i))); } RETURN_IF_ERROR(vectorized::VExpr::prepare(_projections, state, projections_row_desc())); if (has_output_row_descriptor()) { RETURN_IF_ERROR( vectorized::VExpr::check_expr_output_type(_projections, *_output_row_descriptor)); } for (auto& i : _children) { RETURN_IF_ERROR(i->prepare(state)); } return Status::OK(); } Status ExecNode::alloc_resource(RuntimeState* state) { for (auto& conjunct : _conjuncts) { RETURN_IF_ERROR(conjunct->open(state)); } for (auto& projections : _intermediate_projections) { RETURN_IF_ERROR(vectorized::VExpr::open(projections, state)); } RETURN_IF_ERROR(vectorized::VExpr::open(_projections, state)); return Status::OK(); } Status ExecNode::open(RuntimeState* state) { return alloc_resource(state); } Status ExecNode::reset(RuntimeState* state) { _num_rows_returned = 0; for (auto& i : _children) { RETURN_IF_ERROR(i->reset(state)); } return Status::OK(); } void ExecNode::release_resource(doris::RuntimeState* state) { if (!_is_resource_released) { if (_rows_returned_counter != nullptr) { COUNTER_SET(_rows_returned_counter, _num_rows_returned); } _is_resource_released = true; } if (_peak_memory_usage_counter) { _peak_memory_usage_counter->set(_mem_tracker->peak_consumption()); } } Status ExecNode::close(RuntimeState* state) { if (_is_closed) { LOG(INFO) << "query= " << print_id(state->query_id()) << " fragment_instance_id=" << print_id(state->fragment_instance_id()) << " already closed"; return Status::OK(); } _is_closed = true; Status result; for (auto& i : _children) { auto st = i->close(state); if (result.ok() && !st.ok()) { result = st; } } release_resource(state); LOG(INFO) << "query= " << print_id(state->query_id()) << ", fragment_instance_id=" << print_id(state->fragment_instance_id()) << ", id=" << _id << " type=" << print_plan_node_type(_type) << " closed"; return result; } void ExecNode::add_runtime_exec_option(const std::string& str) { std::lock_guard l(_exec_options_lock); if (_runtime_exec_options.empty()) { _runtime_exec_options = str; } else { _runtime_exec_options.append(", "); _runtime_exec_options.append(str); } runtime_profile()->add_info_string("ExecOption", _runtime_exec_options); } Status ExecNode::create_tree(RuntimeState* state, ObjectPool* pool, const TPlan& plan, const DescriptorTbl& descs, ExecNode** root) { if (plan.nodes.empty()) { *root = nullptr; return Status::OK(); } int node_idx = 0; RETURN_IF_ERROR(create_tree_helper(state, pool, plan.nodes, descs, nullptr, &node_idx, root)); if (node_idx + 1 != plan.nodes.size()) { // TODO: print thrift msg for diagnostic purposes. return Status::InternalError( "Plan tree only partially reconstructed. Not all thrift nodes were used."); } return Status::OK(); } Status ExecNode::create_tree_helper(RuntimeState* state, ObjectPool* pool, const std::vector& thrift_plan_nodes, const DescriptorTbl& descs, ExecNode* parent, int* node_idx, ExecNode** root) { // propagate error case if (*node_idx >= thrift_plan_nodes.size()) { // TODO: print thrift msg return Status::InternalError("Failed to reconstruct plan tree from thrift."); } const TPlanNode& cur_plan_node = thrift_plan_nodes[*node_idx]; int num_children = cur_plan_node.num_children; // Step 1 Create current ExecNode according to current thrift plan node. ExecNode* cur_exec_node = nullptr; RETURN_IF_ERROR(create_node(state, pool, cur_plan_node, descs, &cur_exec_node)); if (cur_exec_node != nullptr && state->get_query_ctx()) { state->get_query_ctx()->register_query_statistics(cur_exec_node->get_query_statistics()); } // Step 1.1 // Record current node if we have parent or record myself as root node. if (parent != nullptr) { parent->_children.push_back(cur_exec_node); } else { *root = cur_exec_node; } // Step 2 // Create child ExecNode tree of current node in a recursive manner. for (int i = 0; i < num_children; i++) { ++*node_idx; RETURN_IF_ERROR(create_tree_helper(state, pool, thrift_plan_nodes, descs, cur_exec_node, node_idx, nullptr)); // we are expecting a child, but have used all nodes // this means we have been given a bad tree and must fail if (*node_idx >= thrift_plan_nodes.size()) { // TODO: print thrift msg return Status::InternalError("Failed to reconstruct plan tree from thrift."); } } // Step 3 Init myself after sub ExecNode tree is created and initialized RETURN_IF_ERROR(cur_exec_node->init(cur_plan_node, state)); // build up tree of profiles; add children >0 first, so that when we print // the profile, child 0 is printed last (makes the output more readable) for (int i = 1; i < cur_exec_node->_children.size(); ++i) { cur_exec_node->runtime_profile()->add_child(cur_exec_node->_children[i]->runtime_profile(), true, nullptr); } if (!cur_exec_node->_children.empty()) { cur_exec_node->runtime_profile()->add_child(cur_exec_node->_children[0]->runtime_profile(), true, nullptr); } return Status::OK(); } // NOLINTBEGIN(readability-function-size) Status ExecNode::create_node(RuntimeState* state, ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs, ExecNode** node) { VLOG_CRITICAL << "tnode:\n" << apache::thrift::ThriftDebugString(tnode); switch (tnode.node_type) { case TPlanNodeType::MYSQL_SCAN_NODE: #ifdef DORIS_WITH_MYSQL *node = pool->add(new vectorized::VMysqlScanNode(pool, tnode, descs)); return Status::OK(); #else return Status::InternalError( "Don't support MySQL table, you should rebuild Doris with WITH_MYSQL option ON"); #endif case TPlanNodeType::ODBC_SCAN_NODE: *node = pool->add(new vectorized::NewOdbcScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::JDBC_SCAN_NODE: if (config::enable_java_support) { *node = pool->add(new vectorized::NewJdbcScanNode(pool, tnode, descs)); return Status::OK(); } else { return Status::InternalError( "Jdbc scan node is disabled, you can change be config enable_java_support " "to true and restart be."); } case TPlanNodeType::ES_HTTP_SCAN_NODE: *node = pool->add(new vectorized::NewEsScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::SCHEMA_SCAN_NODE: *node = pool->add(new vectorized::VSchemaScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::META_SCAN_NODE: *node = pool->add(new vectorized::VMetaScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::OLAP_SCAN_NODE: *node = pool->add(new vectorized::NewOlapScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::AGGREGATION_NODE: if (tnode.agg_node.aggregate_functions.empty() && state->enable_pipeline_exec()) { *node = pool->add(new vectorized::DistinctAggregationNode(pool, tnode, descs)); } else { *node = pool->add(new vectorized::AggregationNode(pool, tnode, descs)); } return Status::OK(); case TPlanNodeType::HASH_JOIN_NODE: *node = pool->add(new vectorized::HashJoinNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::CROSS_JOIN_NODE: *node = pool->add(new vectorized::VNestedLoopJoinNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::EMPTY_SET_NODE: *node = pool->add(new vectorized::VEmptySetNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::EXCHANGE_NODE: *node = pool->add(new doris::vectorized::VExchangeNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::SELECT_NODE: *node = pool->add(new doris::vectorized::VSelectNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::SORT_NODE: *node = pool->add(new vectorized::VSortNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::ANALYTIC_EVAL_NODE: *node = pool->add(new vectorized::VAnalyticEvalNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::MERGE_NODE: RETURN_ERROR_IF_NON_VEC; case TPlanNodeType::UNION_NODE: *node = pool->add(new vectorized::VUnionNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::INTERSECT_NODE: *node = pool->add(new vectorized::VIntersectNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::EXCEPT_NODE: *node = pool->add(new vectorized::VExceptNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::FILE_SCAN_NODE: *node = pool->add(new vectorized::NewFileScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::REPEAT_NODE: *node = pool->add(new vectorized::VRepeatNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::ASSERT_NUM_ROWS_NODE: *node = pool->add(new vectorized::VAssertNumRowsNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::TABLE_FUNCTION_NODE: *node = pool->add(new vectorized::VTableFunctionNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::DATA_GEN_SCAN_NODE: *node = pool->add(new vectorized::VDataGenFunctionScanNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::PARTITION_SORT_NODE: *node = pool->add(new vectorized::VPartitionSortNode(pool, tnode, descs)); return Status::OK(); case TPlanNodeType::GROUP_COMMIT_SCAN_NODE: *node = pool->add(new vectorized::GroupCommitScanNode(pool, tnode, descs)); return Status::OK(); default: auto i = _TPlanNodeType_VALUES_TO_NAMES.find(tnode.node_type); const char* str = "unknown node type"; if (i != _TPlanNodeType_VALUES_TO_NAMES.end()) { str = i->second; } std::stringstream error_msg; error_msg << str << " not implemented"; return Status::InternalError(error_msg.str()); } return Status::OK(); } // NOLINTEND(readability-function-size) std::string ExecNode::debug_string() const { std::stringstream out; this->debug_string(0, &out); return out.str(); } void ExecNode::debug_string(int indentation_level, std::stringstream* out) const { *out << " id=" << _id; *out << " type=" << print_plan_node_type(_type); *out << " tuple_ids=["; for (auto id : _tuple_ids) { *out << id << ", "; } *out << "]"; for (auto* i : _children) { *out << "\n"; i->debug_string(indentation_level + 1, out); } } void ExecNode::collect_nodes(TPlanNodeType::type node_type, std::vector* nodes) { if (_type == node_type) { nodes->push_back(this); } for (auto& i : _children) { i->collect_nodes(node_type, nodes); } } void ExecNode::collect_scan_nodes(vector* nodes) { collect_nodes(TPlanNodeType::OLAP_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::ES_HTTP_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::DATA_GEN_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::FILE_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::META_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::JDBC_SCAN_NODE, nodes); collect_nodes(TPlanNodeType::ODBC_SCAN_NODE, nodes); } void ExecNode::init_runtime_profile(const std::string& name) { std::stringstream ss; ss << name << " (id=" << _id << ")"; _runtime_profile = std::make_unique(ss.str()); _runtime_profile->set_metadata(_id); } void ExecNode::release_block_memory(vectorized::Block& block, uint16_t child_idx) { DCHECK(child_idx < _children.size()); block.clear_column_data(child(child_idx)->row_desc().num_materialized_slots()); } void ExecNode::reached_limit(vectorized::Block* block, bool* eos) { if (_limit != -1 and _num_rows_returned + block->rows() >= _limit) { block->set_num_rows(_limit - _num_rows_returned); *eos = true; } _num_rows_returned += block->rows(); COUNTER_SET(_rows_returned_counter, _num_rows_returned); } Status ExecNode::get_next(RuntimeState* state, vectorized::Block* block, bool* eos) { return Status::NotSupported("Not Implemented get block"); } std::string ExecNode::get_name() { return "V" + print_plan_node_type(_type); } Status ExecNode::do_projections(vectorized::Block* origin_block, vectorized::Block* output_block) { SCOPED_TIMER(_exec_timer); SCOPED_TIMER(_projection_timer); const size_t rows = origin_block->rows(); if (rows == 0) { return Status::OK(); } vectorized::Block input_block = *origin_block; std::vector result_column_ids; for (auto& projections : _intermediate_projections) { result_column_ids.resize(projections.size()); for (int i = 0; i < projections.size(); i++) { RETURN_IF_ERROR(projections[i]->execute(&input_block, &result_column_ids[i])); } input_block.shuffle_columns(result_column_ids); } DCHECK_EQ(rows, input_block.rows()); auto insert_column_datas = [&](auto& to, vectorized::ColumnPtr& from, size_t rows) { if (to->is_nullable() && !from->is_nullable()) { if (_keep_origin || !from->is_exclusive()) { auto& null_column = reinterpret_cast(*to); null_column.get_nested_column().insert_range_from(*from, 0, rows); null_column.get_null_map_column().get_data().resize_fill(rows, 0); } else { to = make_nullable(from, false)->assume_mutable(); } } else { if (_keep_origin || !from->is_exclusive()) { to->insert_range_from(*from, 0, rows); } else { to = from->assume_mutable(); } } }; using namespace vectorized; MutableBlock mutable_block = VectorizedUtils::build_mutable_mem_reuse_block(output_block, *_output_row_descriptor); auto& mutable_columns = mutable_block.mutable_columns(); DCHECK_EQ(mutable_columns.size(), _projections.size()); for (int i = 0; i < mutable_columns.size(); ++i) { auto result_column_id = -1; RETURN_IF_ERROR(_projections[i]->execute(&input_block, &result_column_id)); auto column_ptr = input_block.get_by_position(result_column_id) .column->convert_to_full_column_if_const(); //TODO: this is a quick fix, we need a new function like "change_to_nullable" to do it insert_column_datas(mutable_columns[i], column_ptr, rows); } DCHECK(mutable_block.rows() == rows); output_block->set_columns(std::move(mutable_columns)); return Status::OK(); } Status ExecNode::get_next_after_projects( RuntimeState* state, vectorized::Block* block, bool* eos, const std::function& func, bool clear_data) { if (_output_row_descriptor) { if (clear_data) { clear_origin_block(); } RETURN_IF_ERROR(func(state, &_origin_block, eos)); RETURN_IF_ERROR(do_projections(&_origin_block, block)); } else { RETURN_IF_ERROR(func(state, block, eos)); } _peak_memory_usage_counter->set(_mem_tracker->peak_consumption()); if (block && !block->empty()) { COUNTER_UPDATE(_output_bytes_counter, block->allocated_bytes()); COUNTER_UPDATE(_block_count_counter, 1); } return Status::OK(); } Status ExecNode::sink(RuntimeState* state, vectorized::Block* input_block, bool eos) { return Status::NotSupported("{} not implements sink", get_name()); } } // namespace doris