Files
doris/be/src/runtime/mem_pool.cpp
Xinyi Zou 2a1803c646 [enhancement](memtracker) Optimize query memory accuracy (#11740)
Currently, only the virtual memory used by the query can be tracked through the tcmalloc hook. When the memory is not fully used after the application, the recorded virtual memory will be larger than the physical memory.

At present, it is mainly because PODArray does not memset 0 when applying for memory, and blocks applied for through PODArray in places such as VOlapScanNode::_free_blocks are usually used for memory reuse and cannot be fully used.
2022-08-16 14:23:28 +08:00

288 lines
11 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/apache/impala/blob/branch-2.9.0/be/src/runtime/mem-pool.cc
// and modified by Doris
#include "runtime/mem_pool.h"
#include <stdio.h>
#include <algorithm>
#include <sstream>
#include "runtime/memory/chunk_allocator.h"
#include "runtime/memory/mem_tracker.h"
#include "util/bit_util.h"
#include "util/doris_metrics.h"
namespace doris {
#define MEM_POOL_POISON (0x66aa77bb)
const int MemPool::INITIAL_CHUNK_SIZE;
const int MemPool::MAX_CHUNK_SIZE;
const int MemPool::DEFAULT_ALIGNMENT;
uint32_t MemPool::k_zero_length_region_ alignas(std::max_align_t) = MEM_POOL_POISON;
MemPool::MemPool(MemTracker* mem_tracker)
: current_chunk_idx_(-1),
next_chunk_size_(INITIAL_CHUNK_SIZE),
total_allocated_bytes_(0),
total_reserved_bytes_(0),
peak_allocated_bytes_(0),
_mem_tracker(mem_tracker) {}
MemPool::MemPool()
: current_chunk_idx_(-1),
next_chunk_size_(INITIAL_CHUNK_SIZE),
total_allocated_bytes_(0),
total_reserved_bytes_(0),
peak_allocated_bytes_(0),
_mem_tracker(nullptr) {}
MemPool::ChunkInfo::ChunkInfo(const Chunk& chunk_) : chunk(chunk_), allocated_bytes(0) {
DorisMetrics::instance()->memory_pool_bytes_total->increment(chunk.size);
}
MemPool::~MemPool() {
int64_t total_bytes_released = 0;
for (auto& chunk : chunks_) {
total_bytes_released += chunk.chunk.size;
ChunkAllocator::instance()->free(chunk.chunk);
}
THREAD_MEM_TRACKER_TRANSFER_FROM(total_bytes_released - peak_allocated_bytes_,
ExecEnv::GetInstance()->process_mem_tracker().get());
if (_mem_tracker) _mem_tracker->release(total_bytes_released);
DorisMetrics::instance()->memory_pool_bytes_total->increment(-total_bytes_released);
}
void MemPool::clear() {
current_chunk_idx_ = -1;
for (auto& chunk : chunks_) {
chunk.allocated_bytes = 0;
ASAN_POISON_MEMORY_REGION(chunk.chunk.data, chunk.chunk.size);
}
total_allocated_bytes_ = 0;
DCHECK(check_integrity(false));
}
void MemPool::free_all() {
int64_t total_bytes_released = 0;
for (auto& chunk : chunks_) {
total_bytes_released += chunk.chunk.size;
ChunkAllocator::instance()->free(chunk.chunk);
}
THREAD_MEM_TRACKER_TRANSFER_FROM(total_bytes_released - peak_allocated_bytes_,
ExecEnv::GetInstance()->process_mem_tracker().get());
if (_mem_tracker) _mem_tracker->release(total_bytes_released);
chunks_.clear();
next_chunk_size_ = INITIAL_CHUNK_SIZE;
current_chunk_idx_ = -1;
total_allocated_bytes_ = 0;
total_reserved_bytes_ = 0;
peak_allocated_bytes_ = 0;
DorisMetrics::instance()->memory_pool_bytes_total->increment(-total_bytes_released);
}
Status MemPool::find_chunk(size_t min_size, bool check_limits) {
// Try to allocate from a free chunk. We may have free chunks after the current chunk
// if Clear() was called. The current chunk may be free if ReturnPartialAllocation()
// was called. The first free chunk (if there is one) can therefore be either the
// current chunk or the chunk immediately after the current chunk.
int first_free_idx = 0;
if (current_chunk_idx_ == -1) {
first_free_idx = 0;
} else {
DCHECK_GE(current_chunk_idx_, 0);
first_free_idx = current_chunk_idx_ + (chunks_[current_chunk_idx_].allocated_bytes > 0);
}
for (int idx = current_chunk_idx_ + 1; idx < chunks_.size(); ++idx) {
// All chunks after 'current_chunk_idx_' should be free.
DCHECK_EQ(chunks_[idx].allocated_bytes, 0);
if (chunks_[idx].chunk.size >= min_size) {
// This chunk is big enough. Move it before the other free chunks.
if (idx != first_free_idx) std::swap(chunks_[idx], chunks_[first_free_idx]);
current_chunk_idx_ = first_free_idx;
DCHECK(check_integrity(true));
return Status::OK();
}
}
// Didn't find a big enough free chunk - need to allocate new chunk.
size_t chunk_size = 0;
DCHECK_LE(next_chunk_size_, MAX_CHUNK_SIZE);
if (config::disable_mem_pools) {
// Disable pooling by sizing the chunk to fit only this allocation.
// Make sure the alignment guarantees are respected.
chunk_size = std::max<size_t>(min_size, alignof(max_align_t));
} else {
DCHECK_GE(next_chunk_size_, INITIAL_CHUNK_SIZE);
chunk_size = std::max<size_t>(min_size, next_chunk_size_);
}
chunk_size = BitUtil::RoundUpToPowerOfTwo(chunk_size);
if (check_limits &&
!thread_context()->_thread_mem_tracker_mgr->limiter_mem_tracker()->check_limit(
chunk_size)) {
return Status::MemoryAllocFailed("MemPool find new chunk {} bytes faild, exceed limit",
chunk_size);
}
// Allocate a new chunk. Return early if allocate fails.
Chunk chunk;
RETURN_IF_ERROR(ChunkAllocator::instance()->allocate(chunk_size, &chunk));
THREAD_MEM_TRACKER_TRANSFER_TO(chunk_size, ExecEnv::GetInstance()->process_mem_tracker().get());
if (_mem_tracker) _mem_tracker->consume(chunk_size);
ASAN_POISON_MEMORY_REGION(chunk.data, chunk_size);
// Put it before the first free chunk. If no free chunks, it goes at the end.
if (first_free_idx == static_cast<int>(chunks_.size())) {
chunks_.emplace_back(chunk);
} else {
chunks_.insert(chunks_.begin() + first_free_idx, ChunkInfo(chunk));
}
current_chunk_idx_ = first_free_idx;
total_reserved_bytes_ += chunk_size;
// Don't increment the chunk size until the allocation succeeds: if an attempted
// large allocation fails we don't want to increase the chunk size further.
next_chunk_size_ = static_cast<int>(std::min<int64_t>(chunk_size * 2, MAX_CHUNK_SIZE));
DCHECK(check_integrity(true));
return Status::OK();
}
void MemPool::acquire_data(MemPool* src, bool keep_current) {
DCHECK(src->check_integrity(false));
int num_acquired_chunks = 0;
if (keep_current) {
num_acquired_chunks = src->current_chunk_idx_;
} else if (src->get_free_offset() == 0) {
// nothing in the last chunk
num_acquired_chunks = src->current_chunk_idx_;
} else {
num_acquired_chunks = src->current_chunk_idx_ + 1;
}
if (num_acquired_chunks <= 0) {
if (!keep_current) src->free_all();
return;
}
auto end_chunk = src->chunks_.begin() + num_acquired_chunks;
int64_t total_transferred_bytes = 0;
for (auto i = src->chunks_.begin(); i != end_chunk; ++i) {
total_transferred_bytes += i->chunk.size;
}
src->total_reserved_bytes_ -= total_transferred_bytes;
total_reserved_bytes_ += total_transferred_bytes;
// Skip unnecessary atomic ops if the mem_trackers are the same.
if (src->_mem_tracker != _mem_tracker) {
if (src->_mem_tracker) {
src->_mem_tracker->release(total_transferred_bytes);
}
if (_mem_tracker) {
_mem_tracker->consume(total_transferred_bytes);
}
}
// insert new chunks after current_chunk_idx_
auto insert_chunk = chunks_.begin() + (current_chunk_idx_ + 1);
chunks_.insert(insert_chunk, src->chunks_.begin(), end_chunk);
src->chunks_.erase(src->chunks_.begin(), end_chunk);
current_chunk_idx_ += num_acquired_chunks;
if (keep_current) {
src->current_chunk_idx_ = 0;
DCHECK(src->chunks_.size() == 1 || src->chunks_[1].allocated_bytes == 0);
total_allocated_bytes_ += src->total_allocated_bytes_ - src->get_free_offset();
src->total_allocated_bytes_ = src->get_free_offset();
} else {
src->current_chunk_idx_ = -1;
total_allocated_bytes_ += src->total_allocated_bytes_;
src->total_allocated_bytes_ = 0;
}
reset_peak();
if (!keep_current) src->free_all();
DCHECK(src->check_integrity(false));
DCHECK(check_integrity(false));
}
void MemPool::exchange_data(MemPool* other) {
int64_t delta_size = other->total_reserved_bytes_ - total_reserved_bytes_;
if (other->_mem_tracker != _mem_tracker) {
if (other->_mem_tracker) {
other->_mem_tracker->release(delta_size);
}
if (_mem_tracker) {
_mem_tracker->consume(delta_size);
}
}
std::swap(current_chunk_idx_, other->current_chunk_idx_);
std::swap(next_chunk_size_, other->next_chunk_size_);
std::swap(total_allocated_bytes_, other->total_allocated_bytes_);
std::swap(total_reserved_bytes_, other->total_reserved_bytes_);
std::swap(peak_allocated_bytes_, other->peak_allocated_bytes_);
std::swap(chunks_, other->chunks_);
}
std::string MemPool::debug_string() {
std::stringstream out;
char str[16];
out << "MemPool(#chunks=" << chunks_.size() << " [";
for (int i = 0; i < chunks_.size(); ++i) {
sprintf(str, "0x%lx=", reinterpret_cast<size_t>(chunks_[i].chunk.data));
out << (i > 0 ? " " : "") << str << chunks_[i].chunk.size << "/"
<< chunks_[i].allocated_bytes;
}
out << "] current_chunk=" << current_chunk_idx_ << " total_sizes=" << total_reserved_bytes_
<< " total_alloc=" << total_allocated_bytes_ << ")";
return out.str();
}
bool MemPool::check_integrity(bool check_current_chunk_empty) {
DCHECK_LT(current_chunk_idx_, static_cast<int>(chunks_.size()));
// Without pooling, there are way too many chunks and this takes too long.
if (config::disable_mem_pools) return true;
// check that current_chunk_idx_ points to the last chunk with allocated data
int64_t total_allocated = 0;
for (int i = 0; i < chunks_.size(); ++i) {
DCHECK_GT(chunks_[i].chunk.size, 0);
if (i < current_chunk_idx_) {
DCHECK_GT(chunks_[i].allocated_bytes, 0);
} else if (i == current_chunk_idx_) {
DCHECK_GE(chunks_[i].allocated_bytes, 0);
if (check_current_chunk_empty) DCHECK_EQ(chunks_[i].allocated_bytes, 0);
} else {
DCHECK_EQ(chunks_[i].allocated_bytes, 0);
}
total_allocated += chunks_[i].allocated_bytes;
}
DCHECK_EQ(total_allocated, total_allocated_bytes_);
return true;
}
} // namespace doris