NOTE: This patch would modify all Backend's data. And this will cause a very long time to restart be. So if you want to interferer your product environment, you should upgrade backend one by one. 1. Refactoring be is to clarify the structure the codes. 2. Use unique id to indicate a rowset. Nameing rowset with tablet_id and version will lead to many conflicts among compaction, clone, restore. 3. Extract an rowset interface to encapsulate rowsets with different format.
457 lines
16 KiB
C++
457 lines
16 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include <time.h>
|
|
#include <gtest/gtest.h>
|
|
#include <google/protobuf/stubs/common.h>
|
|
|
|
#include "olap/field.h"
|
|
#include "olap/column_predicate.h"
|
|
#include "olap/null_predicate.h"
|
|
#include "runtime/mem_pool.h"
|
|
#include "runtime/string_value.hpp"
|
|
#include "runtime/vectorized_row_batch.h"
|
|
#include "util/logging.h"
|
|
|
|
namespace doris {
|
|
|
|
namespace datetime {
|
|
|
|
static uint24_t to_date_timestamp(const char* date_string) {
|
|
tm time_tm;
|
|
strptime(date_string, "%Y-%m-%d", &time_tm);
|
|
|
|
int value = (time_tm.tm_year + 1900) * 16 * 32
|
|
+ (time_tm.tm_mon + 1) * 32
|
|
+ time_tm.tm_mday;
|
|
return uint24_t(value);
|
|
}
|
|
|
|
static uint64_t to_datetime_timestamp(const std::string& value_string) {
|
|
tm time_tm;
|
|
strptime(value_string.c_str(), "%Y-%m-%d %H:%M:%S", &time_tm);
|
|
|
|
uint64_t value = ((time_tm.tm_year + 1900) * 10000L
|
|
+ (time_tm.tm_mon + 1) * 100L
|
|
+ time_tm.tm_mday) * 1000000L
|
|
+ time_tm.tm_hour * 10000L
|
|
+ time_tm.tm_min * 100L
|
|
+ time_tm.tm_sec;
|
|
|
|
return value;
|
|
}
|
|
|
|
};
|
|
|
|
class TestNullPredicate : public testing::Test {
|
|
public:
|
|
TestNullPredicate() : _vectorized_batch(NULL) {
|
|
_mem_tracker.reset(new MemTracker(-1));
|
|
_mem_pool.reset(new MemPool(_mem_tracker.get()));
|
|
}
|
|
|
|
~TestNullPredicate() {
|
|
if (_vectorized_batch != NULL) {
|
|
delete _vectorized_batch;
|
|
}
|
|
}
|
|
|
|
void SetTabletSchema(std::string name,
|
|
std::string type, std::string aggregation,
|
|
uint32_t length, bool is_allow_null, bool is_key, TabletSchema* tablet_schema) {
|
|
TabletSchemaPB tablet_schema_pb;
|
|
static int id = 0;
|
|
ColumnPB* column = tablet_schema_pb.add_column();;
|
|
column->set_unique_id(++id);
|
|
column->set_name(name);
|
|
column->set_type(type);
|
|
column->set_is_key(is_key);
|
|
column->set_is_nullable(is_allow_null);
|
|
column->set_length(length);
|
|
column->set_aggregation(aggregation);
|
|
column->set_precision(1000);
|
|
column->set_frac(1000);
|
|
column->set_is_bf_column(false);
|
|
tablet_schema->init_from_pb(tablet_schema_pb);
|
|
}
|
|
|
|
void InitVectorizedBatch(const TabletSchema* tablet_schema,
|
|
const std::vector<uint32_t>&ids,
|
|
int size) {
|
|
_vectorized_batch = new VectorizedRowBatch(tablet_schema, ids, size);
|
|
_vectorized_batch->set_size(size);
|
|
}
|
|
std::unique_ptr<MemTracker> _mem_tracker;
|
|
std::unique_ptr<MemPool> _mem_pool;
|
|
VectorizedRowBatch* _vectorized_batch;
|
|
};
|
|
|
|
#define TEST_IN_LIST_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \
|
|
TEST_F(TestNullPredicate, TYPE_NAME##_COLUMN) { \
|
|
TabletSchema tablet_schema; \
|
|
SetTabletSchema(std::string("TYPE_NAME##_COLUMN"), FIELD_TYPE, \
|
|
"REPLACE", 1, false, true, &tablet_schema); \
|
|
int size = 10; \
|
|
std::vector<uint32_t> return_columns; \
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) { \
|
|
return_columns.push_back(i); \
|
|
} \
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size); \
|
|
ColumnVector* col_vector = _vectorized_batch->column(0); \
|
|
\
|
|
/* for no nulls */ \
|
|
col_vector->set_no_nulls(true); \
|
|
TYPE* col_data = reinterpret_cast<TYPE*>(_mem_pool->allocate(size * sizeof(TYPE))); \
|
|
col_vector->set_col_data(col_data); \
|
|
for (int i = 0; i < size; ++i) { \
|
|
*(col_data + i) = i; \
|
|
} \
|
|
\
|
|
ColumnPredicate* pred = new NullPredicate(0, true); \
|
|
pred->evaluate(_vectorized_batch); \
|
|
ASSERT_EQ(_vectorized_batch->size(), 0); \
|
|
\
|
|
/* for has nulls */ \
|
|
col_vector->set_no_nulls(false); \
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size)); \
|
|
memset(is_null, 0, size); \
|
|
col_vector->set_is_null(is_null); \
|
|
for (int i = 0; i < size; ++i) { \
|
|
if (i % 2 == 0) { \
|
|
is_null[i] = true; \
|
|
} else { \
|
|
*(col_data + i) = i; \
|
|
} \
|
|
} \
|
|
_vectorized_batch->set_size(size); \
|
|
_vectorized_batch->set_selected_in_use(false); \
|
|
pred->evaluate(_vectorized_batch); \
|
|
ASSERT_EQ(_vectorized_batch->size(), 5); \
|
|
} \
|
|
|
|
TEST_IN_LIST_PREDICATE(int8_t, TINYINT, "TINYINT")
|
|
TEST_IN_LIST_PREDICATE(int16_t, SMALLINT, "SMALLINT")
|
|
TEST_IN_LIST_PREDICATE(int32_t, INT, "INT")
|
|
TEST_IN_LIST_PREDICATE(int64_t, BIGINT, "BIGINT")
|
|
TEST_IN_LIST_PREDICATE(int128_t, LARGEINT, "LARGEINT")
|
|
|
|
TEST_F(TestNullPredicate, FLOAT_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
float* col_data = reinterpret_cast<float*>(_mem_pool->allocate(size * sizeof(float)));
|
|
col_vector->set_col_data(col_data);
|
|
for (int i = 0; i < size; ++i) {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 2 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
}
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 5);
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DOUBLE_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
double* col_data = reinterpret_cast<double*>(_mem_pool->allocate(size * sizeof(double)));
|
|
col_vector->set_col_data(col_data);
|
|
for (int i = 0; i < size; ++i) {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 2 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
*(col_data + i) = i + 0.1;
|
|
}
|
|
}
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 5);
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DECIMAL_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
decimal12_t* col_data = reinterpret_cast<decimal12_t*>(_mem_pool->allocate(size * sizeof(decimal12_t)));
|
|
col_vector->set_col_data(col_data);
|
|
for (int i = 0; i < size; ++i) {
|
|
(*(col_data + i)).integer = i;
|
|
(*(col_data + i)).fraction = i;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
(*(col_data + i)).integer = i;
|
|
(*(col_data + i)).fraction = i;
|
|
}
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 4);
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, STRING_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 10;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
StringValue* col_data = reinterpret_cast<StringValue*>(_mem_pool->allocate(size * sizeof(StringValue)));
|
|
col_vector->set_col_data(col_data);
|
|
|
|
char* string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
|
|
for (int i = 0; i < size; ++i) {
|
|
for (int j = 0; j <= i; ++j) {
|
|
string_buffer[j] = 'a' + i;
|
|
}
|
|
(*(col_data + i)).len = i + 1;
|
|
(*(col_data + i)).ptr = string_buffer;
|
|
string_buffer += i + 1;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
ASSERT_EQ(_vectorized_batch->size(), 10);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
for (int j = 0; j <= i; ++j) {
|
|
string_buffer[j] = 'a' + i;
|
|
}
|
|
(*(col_data + i)).len = i + 1;
|
|
(*(col_data + i)).ptr = string_buffer;
|
|
}
|
|
string_buffer += i + 1;
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 4);
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DATE_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DATE_COLUMN"), "DATE",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 6;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
uint24_t* col_data = reinterpret_cast<uint24_t*>(_mem_pool->allocate(size * sizeof(uint24_t)));
|
|
col_vector->set_col_data(col_data);
|
|
|
|
std::vector<std::string> date_array;
|
|
date_array.push_back("2017-09-07");
|
|
date_array.push_back("2017-09-08");
|
|
date_array.push_back("2017-09-09");
|
|
date_array.push_back("2017-09-10");
|
|
date_array.push_back("2017-09-11");
|
|
date_array.push_back("2017-09-12");
|
|
for (int i = 0; i < size; ++i) {
|
|
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 2);
|
|
}
|
|
|
|
TEST_F(TestNullPredicate, DATETIME_COLUMN) {
|
|
TabletSchema tablet_schema;
|
|
SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME",
|
|
"REPLACE", 1, false, true, &tablet_schema);
|
|
int size = 6;
|
|
std::vector<uint32_t> return_columns;
|
|
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
|
|
return_columns.push_back(i);
|
|
}
|
|
InitVectorizedBatch(&tablet_schema, return_columns, size);
|
|
ColumnVector* col_vector = _vectorized_batch->column(0);
|
|
|
|
// for no nulls
|
|
col_vector->set_no_nulls(true);
|
|
uint64_t* col_data = reinterpret_cast<uint64_t*>(_mem_pool->allocate(size * sizeof(uint64_t)));
|
|
col_vector->set_col_data(col_data);
|
|
|
|
std::vector<std::string> date_array;
|
|
date_array.push_back("2017-09-07 00:00:00");
|
|
date_array.push_back("2017-09-08 00:01:00");
|
|
date_array.push_back("2017-09-09 00:00:01");
|
|
date_array.push_back("2017-09-10 01:00:00");
|
|
date_array.push_back("2017-09-11 01:01:00");
|
|
date_array.push_back("2017-09-12 01:01:01");
|
|
for (int i = 0; i < size; ++i) {
|
|
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
|
|
ColumnPredicate* pred = new NullPredicate(0, true);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 0);
|
|
|
|
// for has nulls
|
|
col_vector->set_no_nulls(false);
|
|
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
|
|
memset(is_null, 0, size);
|
|
col_vector->set_is_null(is_null);
|
|
for (int i = 0; i < size; ++i) {
|
|
if (i % 3 == 0) {
|
|
is_null[i] = true;
|
|
} else {
|
|
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
|
|
*(col_data + i) = timestamp;
|
|
}
|
|
}
|
|
|
|
_vectorized_batch->set_size(size);
|
|
_vectorized_batch->set_selected_in_use(false);
|
|
pred->evaluate(_vectorized_batch);
|
|
ASSERT_EQ(_vectorized_batch->size(), 2);
|
|
}
|
|
|
|
} // namespace doris
|
|
|
|
int main(int argc, char** argv) {
|
|
std::string conffile = std::string(getenv("DORIS_HOME")) + "/conf/be.conf";
|
|
if (!doris::config::init(conffile.c_str(), false)) {
|
|
fprintf(stderr, "error read config file. \n");
|
|
return -1;
|
|
}
|
|
doris::init_glog("be-test");
|
|
int ret = doris::OLAP_SUCCESS;
|
|
testing::InitGoogleTest(&argc, argv);
|
|
doris::CpuInfo::init();
|
|
ret = RUN_ALL_TESTS();
|
|
google::protobuf::ShutdownProtobufLibrary();
|
|
return ret;
|
|
}
|