We make all MemTrackers shared, in order to show MemTracker real-time consumptions on the web.
As follows:
1. nearly all MemTracker raw ptr -> shared_ptr
2. Use CreateTracker() to create new MemTracker(in order to add itself to its parent)
3. RowBatch & MemPool still use raw ptrs of MemTracker, it's easy to ensure RowBatch & MemPool destructor exec
before MemTracker's destructor. So we don't change these code.
4. MemTracker can use RuntimeProfile's counter to calc consumption. So RuntimeProfile's counter need to be shared
too. We add a shared counter pool to store the shared counter, don't change other counters of RuntimeProfile.
Note that, this PR doesn't change the MemTracker tree structure. So there still have some orphan trackers, e.g. RowBlockV2's MemTracker. If you find some shared MemTrackers are little memory consumption & too time-consuming, you could make them be the orphan, then it's fine to use the raw ptr.
354 lines
12 KiB
C++
354 lines
12 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include <map>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "common/compiler_util.h"
|
|
#include "exec/hash_table.hpp"
|
|
#include "exprs/expr.h"
|
|
#include "runtime/mem_pool.h"
|
|
#include "runtime/string_value.h"
|
|
#include "util/cpu_info.h"
|
|
#include "util/runtime_profile.h"
|
|
|
|
namespace doris {
|
|
|
|
using std::vector;
|
|
using std::map;
|
|
|
|
|
|
class HashTableTest : public testing::Test {
|
|
public:
|
|
HashTableTest() : _mem_pool() {}
|
|
|
|
protected:
|
|
ObjectPool _pool;
|
|
MemPool _mem_pool;
|
|
vector<Expr*> _build_expr;
|
|
vector<Expr*> _probe_expr;
|
|
|
|
virtual void SetUp() {
|
|
RowDescriptor desc;
|
|
Status status;
|
|
|
|
// Not very easy to test complex tuple layouts so this test will use the
|
|
// simplest. The purpose of these tests is to exercise the hash map
|
|
// internals so a simple build/probe expr is fine.
|
|
_build_expr.push_back(_pool.add(new SlotRef(TYPE_INT, 0)));
|
|
status = Expr::prepare(_build_expr, NULL, desc);
|
|
EXPECT_TRUE(status.ok());
|
|
|
|
_probe_expr.push_back(_pool.add(new SlotRef(TYPE_INT, 0)));
|
|
status = Expr::prepare(_probe_expr, NULL, desc);
|
|
EXPECT_TRUE(status.ok());
|
|
}
|
|
|
|
TupleRow* create_tuple_row(int32_t val);
|
|
|
|
// Wrapper to call private methods on HashTable
|
|
// TODO: understand google testing, there must be a more natural way to do this
|
|
void resize_table(HashTable* table, int64_t new_size) {
|
|
table->resize_buckets(new_size);
|
|
}
|
|
|
|
// Do a full table scan on table. All values should be between [min,max). If
|
|
// all_unique, then each key(int value) should only appear once. Results are
|
|
// stored in results, indexed by the key. Results must have been preallocated to
|
|
// be at least max size.
|
|
void full_scan(HashTable* table, int min, int max, bool all_unique,
|
|
TupleRow** results, TupleRow** expected) {
|
|
HashTable::Iterator iter = table->begin();
|
|
|
|
while (iter != table->end()) {
|
|
TupleRow* row = iter.get_row();
|
|
int32_t val = *reinterpret_cast<int32_t*>(_build_expr[0]->get_value(row));
|
|
EXPECT_GE(val, min);
|
|
EXPECT_LT(val, max);
|
|
|
|
if (all_unique) {
|
|
EXPECT_TRUE(results[val] == NULL);
|
|
}
|
|
|
|
EXPECT_EQ(row->get_tuple(0), expected[val]->get_tuple(0));
|
|
results[val] = row;
|
|
iter.next<false>();
|
|
}
|
|
}
|
|
|
|
// Validate that probe_row evaluates overs probe_exprs is equal to build_row
|
|
// evaluated over build_exprs
|
|
void validate_match(TupleRow* probe_row, TupleRow* build_row) {
|
|
EXPECT_TRUE(probe_row != build_row);
|
|
int32_t build_val = *reinterpret_cast<int32_t*>(_build_expr[0]->get_value(probe_row));
|
|
int32_t probe_val = *reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(build_row));
|
|
EXPECT_EQ(build_val, probe_val);
|
|
}
|
|
|
|
struct ProbeTestData {
|
|
TupleRow* probe_row;
|
|
vector<TupleRow*> expected_build_rows;
|
|
};
|
|
|
|
void probe_test(HashTable* table, ProbeTestData* data, int num_data, bool scan) {
|
|
for (int i = 0; i < num_data; ++i) {
|
|
TupleRow* row = data[i].probe_row;
|
|
|
|
HashTable::Iterator iter;
|
|
iter = table->find(row);
|
|
|
|
if (data[i].expected_build_rows.size() == 0) {
|
|
EXPECT_TRUE(iter == table->end());
|
|
} else {
|
|
if (scan) {
|
|
map<TupleRow*, bool> matched;
|
|
|
|
while (iter != table->end()) {
|
|
EXPECT_TRUE(matched.find(iter.get_row()) == matched.end());
|
|
matched[iter.get_row()] = true;
|
|
iter.next<true>();
|
|
}
|
|
|
|
EXPECT_EQ(matched.size(), data[i].expected_build_rows.size());
|
|
|
|
for (int j = 0; i < data[j].expected_build_rows.size(); ++j) {
|
|
EXPECT_TRUE(matched[data[i].expected_build_rows[j]]);
|
|
}
|
|
} else {
|
|
EXPECT_EQ(data[i].expected_build_rows.size(), 1);
|
|
EXPECT_EQ(data[i].expected_build_rows[0]->get_tuple(0),
|
|
iter.get_row()->get_tuple(0));
|
|
validate_match(row, iter.get_row());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
TupleRow* HashTableTest::create_tuple_row(int32_t val) {
|
|
uint8_t* tuple_row_mem = _mem_pool.allocate(sizeof(int32_t*));
|
|
uint8_t* tuple_mem = _mem_pool.allocate(sizeof(int32_t));
|
|
*reinterpret_cast<int32_t*>(tuple_mem) = val;
|
|
TupleRow* row = reinterpret_cast<TupleRow*>(tuple_row_mem);
|
|
row->set_tuple(0, reinterpret_cast<Tuple*>(tuple_mem));
|
|
return row;
|
|
}
|
|
|
|
TEST_F(HashTableTest, SetupTest) {
|
|
TupleRow* build_row1 = create_tuple_row(1);
|
|
TupleRow* build_row2 = create_tuple_row(2);
|
|
TupleRow* probe_row3 = create_tuple_row(3);
|
|
TupleRow* probe_row4 = create_tuple_row(4);
|
|
|
|
int32_t* val_row1 = reinterpret_cast<int32_t*>(_build_expr[0]->get_value(build_row1));
|
|
int32_t* val_row2 = reinterpret_cast<int32_t*>(_build_expr[0]->get_value(build_row2));
|
|
int32_t* val_row3 = reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(probe_row3));
|
|
int32_t* val_row4 = reinterpret_cast<int32_t*>(_probe_expr[0]->get_value(probe_row4));
|
|
|
|
EXPECT_EQ(*val_row1, 1);
|
|
EXPECT_EQ(*val_row2, 2);
|
|
EXPECT_EQ(*val_row3, 3);
|
|
EXPECT_EQ(*val_row4, 4);
|
|
}
|
|
|
|
// This tests inserts the build rows [0->5) to hash table. It validates that they
|
|
// are all there using a full table scan. It also validates that find() is correct
|
|
// testing for probe rows that are both there and not.
|
|
// The hash table is rehashed a few times and the scans/finds are tested again.
|
|
TEST_F(HashTableTest, BasicTest) {
|
|
TupleRow* build_rows[5];
|
|
TupleRow* scan_rows[5] = {0};
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
build_rows[i] = create_tuple_row(i);
|
|
}
|
|
|
|
ProbeTestData probe_rows[10];
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
probe_rows[i].probe_row = create_tuple_row(i);
|
|
|
|
if (i < 5) {
|
|
probe_rows[i].expected_build_rows.push_back(build_rows[i]);
|
|
}
|
|
}
|
|
|
|
// Create the hash table and insert the build rows
|
|
HashTable hash_table(_build_expr, _probe_expr, 1, false, 0);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
hash_table.insert(build_rows[i]);
|
|
}
|
|
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
|
|
// Do a full table scan and validate returned pointers
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
|
|
// Resize and scan again
|
|
resize_table(&hash_table, 64);
|
|
EXPECT_EQ(hash_table.num_buckets(), 64);
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
memset(scan_rows, 0, sizeof(scan_rows));
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
|
|
// Resize to two and cause some collisions
|
|
resize_table(&hash_table, 2);
|
|
EXPECT_EQ(hash_table.num_buckets(), 2);
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
memset(scan_rows, 0, sizeof(scan_rows));
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
|
|
// Resize to one and turn it into a linked list
|
|
resize_table(&hash_table, 1);
|
|
EXPECT_EQ(hash_table.num_buckets(), 1);
|
|
EXPECT_EQ(hash_table.size(), 5);
|
|
memset(scan_rows, 0, sizeof(scan_rows));
|
|
full_scan(&hash_table, 0, 5, true, scan_rows, build_rows);
|
|
probe_test(&hash_table, probe_rows, 10, false);
|
|
}
|
|
|
|
// This tests makes sure we can scan ranges of buckets
|
|
TEST_F(HashTableTest, ScanTest) {
|
|
HashTable hash_table(_build_expr, _probe_expr, 1, false, 0);
|
|
// Add 1 row with val 1, 2 with val 2, etc
|
|
vector<TupleRow*> build_rows;
|
|
ProbeTestData probe_rows[15];
|
|
probe_rows[0].probe_row = create_tuple_row(0);
|
|
|
|
for (int val = 1; val <= 10; ++val) {
|
|
probe_rows[val].probe_row = create_tuple_row(val);
|
|
|
|
for (int i = 0; i < val; ++i) {
|
|
TupleRow* row = create_tuple_row(val);
|
|
hash_table.insert(row);
|
|
build_rows.push_back(row);
|
|
probe_rows[val].expected_build_rows.push_back(row);
|
|
}
|
|
}
|
|
|
|
// Add some more probe rows that aren't there
|
|
for (int val = 11; val < 15; ++val) {
|
|
probe_rows[val].probe_row = create_tuple_row(val);
|
|
}
|
|
|
|
// Test that all the builds were found
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
// Resize and try again
|
|
resize_table(&hash_table, 128);
|
|
EXPECT_EQ(hash_table.num_buckets(), 128);
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
resize_table(&hash_table, 16);
|
|
EXPECT_EQ(hash_table.num_buckets(), 16);
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
|
|
resize_table(&hash_table, 2);
|
|
EXPECT_EQ(hash_table.num_buckets(), 2);
|
|
probe_test(&hash_table, probe_rows, 15, true);
|
|
}
|
|
|
|
// This test continues adding to the hash table to trigger the resize code paths
|
|
TEST_F(HashTableTest, GrowTableTest) {
|
|
int build_row_val = 0;
|
|
int num_to_add = 4;
|
|
int expected_size = 0;
|
|
|
|
auto mem_tracker = std::make_shared<MemTracker>(1024 * 1024);
|
|
HashTable hash_table(
|
|
_build_expr, _probe_expr, 1, false, 0, mem_tracker, num_to_add);
|
|
EXPECT_FALSE(mem_tracker->limit_exceeded());
|
|
|
|
// This inserts about 5M entries
|
|
for (int i = 0; i < 20; ++i) {
|
|
for (int j = 0; j < num_to_add; ++build_row_val, ++j) {
|
|
hash_table.insert(create_tuple_row(build_row_val));
|
|
}
|
|
|
|
expected_size += num_to_add;
|
|
num_to_add *= 2;
|
|
EXPECT_EQ(hash_table.size(), expected_size);
|
|
}
|
|
|
|
EXPECT_TRUE(mem_tracker->limit_exceeded());
|
|
|
|
// Validate that we can find the entries
|
|
for (int i = 0; i < expected_size * 5; i += 100000) {
|
|
TupleRow* probe_row = create_tuple_row(i);
|
|
HashTable::Iterator iter = hash_table.find(probe_row);
|
|
|
|
if (i < expected_size) {
|
|
EXPECT_TRUE(iter != hash_table.end());
|
|
validate_match(probe_row, iter.get_row());
|
|
} else {
|
|
EXPECT_TRUE(iter == hash_table.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
// This test continues adding to the hash table to trigger the resize code paths
|
|
TEST_F(HashTableTest, GrowTableTest2) {
|
|
int build_row_val = 0;
|
|
int num_to_add = 1024;
|
|
int expected_size = 0;
|
|
|
|
auto mem_tracker = std::make_shared<MemTracker>(1024 * 1024);
|
|
HashTable hash_table(
|
|
_build_expr, _probe_expr, 1, false, 0, mem_tracker, num_to_add);
|
|
|
|
LOG(INFO) << time(NULL);
|
|
|
|
// This inserts about 5M entries
|
|
for (int i = 0; i < 5 * 1024 * 1024; ++i) {
|
|
hash_table.insert(create_tuple_row(build_row_val));
|
|
expected_size += num_to_add;
|
|
}
|
|
|
|
LOG(INFO) << time(NULL);
|
|
|
|
// Validate that we can find the entries
|
|
for (int i = 0; i < 5 * 1024 * 1024; ++i) {
|
|
TupleRow* probe_row = create_tuple_row(i);
|
|
hash_table.find(probe_row);
|
|
}
|
|
|
|
LOG(INFO) << time(NULL);
|
|
}
|
|
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
std::string conffile = std::string(getenv("DORIS_HOME")) + "/conf/be.conf";
|
|
if (!doris::config::init(conffile.c_str(), false)) {
|
|
fprintf(stderr, "error read config file. \n");
|
|
return -1;
|
|
}
|
|
init_glog("be-test");
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
doris::CpuInfo::init();
|
|
return RUN_ALL_TESTS();
|
|
}
|