Files
doris/be/src/vec/exec/vaggregation_node.cpp
2022-06-24 19:11:28 +08:00

1127 lines
50 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/exec/vaggregation_node.h"
#include <memory>
#include "exec/exec_node.h"
#include "runtime/mem_pool.h"
#include "runtime/row_batch.h"
#include "vec/core/block.h"
#include "vec/data_types/data_type_nullable.h"
#include "vec/data_types/data_type_string.h"
#include "vec/exprs/vexpr.h"
#include "vec/exprs/vexpr_context.h"
#include "vec/exprs/vslot_ref.h"
#include "vec/utils/util.hpp"
namespace doris::vectorized {
/// The minimum reduction factor (input rows divided by output rows) to grow hash tables
/// in a streaming preaggregation, given that the hash tables are currently the given
/// size or above. The sizes roughly correspond to hash table sizes where the bucket
/// arrays will fit in a cache level. Intuitively, we don't want the working set of the
/// aggregation to expand to the next level of cache unless we're reducing the input
/// enough to outweigh the increased memory latency we'll incur for each hash table
/// lookup.
///
/// Note that the current reduction achieved is not always a good estimate of the
/// final reduction. It may be biased either way depending on the ordering of the
/// input. If the input order is random, we will underestimate the final reduction
/// factor because the probability of a row having the same key as a previous row
/// increases as more input is processed. If the input order is correlated with the
/// key, skew may bias the estimate. If high cardinality keys appear first, we
/// may overestimate and if low cardinality keys appear first, we underestimate.
/// To estimate the eventual reduction achieved, we estimate the final reduction
/// using the planner's estimated input cardinality and the assumption that input
/// is in a random order. This means that we assume that the reduction factor will
/// increase over time.
struct StreamingHtMinReductionEntry {
// Use 'streaming_ht_min_reduction' if the total size of hash table bucket directories in
// bytes is greater than this threshold.
int min_ht_mem;
// The minimum reduction factor to expand the hash tables.
double streaming_ht_min_reduction;
};
// TODO: experimentally tune these values and also programmatically get the cache size
// of the machine that we're running on.
static constexpr StreamingHtMinReductionEntry STREAMING_HT_MIN_REDUCTION[] = {
// Expand up to L2 cache always.
{0, 0.0},
// Expand into L3 cache if we look like we're getting some reduction.
{256 * 1024, 1.1},
// Expand into main memory if we're getting a significant reduction.
{2 * 1024 * 1024, 2.0},
};
static constexpr int STREAMING_HT_MIN_REDUCTION_SIZE =
sizeof(STREAMING_HT_MIN_REDUCTION) / sizeof(STREAMING_HT_MIN_REDUCTION[0]);
AggregationNode::AggregationNode(ObjectPool* pool, const TPlanNode& tnode,
const DescriptorTbl& descs)
: ExecNode(pool, tnode, descs),
_intermediate_tuple_id(tnode.agg_node.intermediate_tuple_id),
_intermediate_tuple_desc(NULL),
_output_tuple_id(tnode.agg_node.output_tuple_id),
_output_tuple_desc(NULL),
_needs_finalize(tnode.agg_node.need_finalize),
_is_merge(false),
_agg_data(),
_build_timer(nullptr),
_exec_timer(nullptr),
_merge_timer(nullptr) {
if (tnode.agg_node.__isset.use_streaming_preaggregation) {
_is_streaming_preagg = tnode.agg_node.use_streaming_preaggregation;
if (_is_streaming_preagg) {
DCHECK(_conjunct_ctxs.empty()) << "Preaggs have no conjuncts";
DCHECK(!tnode.agg_node.grouping_exprs.empty()) << "Streaming preaggs do grouping";
DCHECK(_limit == -1) << "Preaggs have no limits";
}
} else {
_is_streaming_preagg = false;
}
}
AggregationNode::~AggregationNode() = default;
Status AggregationNode::init(const TPlanNode& tnode, RuntimeState* state) {
RETURN_IF_ERROR(ExecNode::init(tnode, state));
// ignore return status for now , so we need to introduce ExecNode::init()
RETURN_IF_ERROR(
VExpr::create_expr_trees(_pool, tnode.agg_node.grouping_exprs, &_probe_expr_ctxs));
// init aggregate functions
_aggregate_evaluators.reserve(tnode.agg_node.aggregate_functions.size());
for (int i = 0; i < tnode.agg_node.aggregate_functions.size(); ++i) {
AggFnEvaluator* evaluator = nullptr;
RETURN_IF_ERROR(
AggFnEvaluator::create(_pool, tnode.agg_node.aggregate_functions[i], &evaluator));
_aggregate_evaluators.push_back(evaluator);
}
const auto& agg_functions = tnode.agg_node.aggregate_functions;
_is_merge = std::any_of(agg_functions.cbegin(), agg_functions.cend(),
[](const auto& e) { return e.nodes[0].agg_expr.is_merge_agg; });
return Status::OK();
}
void AggregationNode::_init_hash_method(std::vector<VExprContext*>& probe_exprs) {
DCHECK(probe_exprs.size() >= 1);
if (probe_exprs.size() == 1) {
auto is_nullable = probe_exprs[0]->root()->is_nullable();
switch (probe_exprs[0]->root()->result_type()) {
case TYPE_TINYINT:
case TYPE_BOOLEAN:
_agg_data.init(AggregatedDataVariants::Type::int8_key, is_nullable);
return;
case TYPE_SMALLINT:
_agg_data.init(AggregatedDataVariants::Type::int16_key, is_nullable);
return;
case TYPE_INT:
case TYPE_FLOAT:
_agg_data.init(AggregatedDataVariants::Type::int32_key, is_nullable);
return;
case TYPE_BIGINT:
case TYPE_DOUBLE:
case TYPE_DATE:
case TYPE_DATETIME:
_agg_data.init(AggregatedDataVariants::Type::int64_key, is_nullable);
return;
case TYPE_LARGEINT:
case TYPE_DECIMALV2:
_agg_data.init(AggregatedDataVariants::Type::int128_key, is_nullable);
return;
default:
_agg_data.init(AggregatedDataVariants::Type::serialized);
}
} else {
bool use_fixed_key = true;
bool has_null = false;
int key_byte_size = 0;
_probe_key_sz.resize(_probe_expr_ctxs.size());
for (int i = 0; i < _probe_expr_ctxs.size(); ++i) {
const auto vexpr = _probe_expr_ctxs[i]->root();
const auto& data_type = vexpr->data_type();
if (!data_type->have_maximum_size_of_value()) {
use_fixed_key = false;
break;
}
auto is_null = data_type->is_nullable();
has_null |= is_null;
_probe_key_sz[i] = data_type->get_maximum_size_of_value_in_memory() - (is_null ? 1 : 0);
key_byte_size += _probe_key_sz[i];
}
if (std::tuple_size<KeysNullMap<UInt256>>::value + key_byte_size > sizeof(UInt256)) {
use_fixed_key = false;
}
if (use_fixed_key) {
if (has_null) {
if (std::tuple_size<KeysNullMap<UInt64>>::value + key_byte_size <= sizeof(UInt64)) {
_agg_data.init(AggregatedDataVariants::Type::int64_keys, has_null);
} else if (std::tuple_size<KeysNullMap<UInt128>>::value + key_byte_size <=
sizeof(UInt128)) {
_agg_data.init(AggregatedDataVariants::Type::int128_keys, has_null);
} else {
_agg_data.init(AggregatedDataVariants::Type::int256_keys, has_null);
}
} else {
if (key_byte_size <= sizeof(UInt64)) {
_agg_data.init(AggregatedDataVariants::Type::int64_keys, has_null);
} else if (key_byte_size <= sizeof(UInt128)) {
_agg_data.init(AggregatedDataVariants::Type::int128_keys, has_null);
} else {
_agg_data.init(AggregatedDataVariants::Type::int256_keys, has_null);
}
}
} else {
_agg_data.init(AggregatedDataVariants::Type::serialized);
}
}
}
Status AggregationNode::prepare(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::prepare(state));
SCOPED_SWITCH_TASK_THREAD_LOCAL_MEM_TRACKER(mem_tracker());
_build_timer = ADD_TIMER(runtime_profile(), "BuildTime");
_exec_timer = ADD_TIMER(runtime_profile(), "ExecTime");
_merge_timer = ADD_TIMER(runtime_profile(), "MergeTime");
_expr_timer = ADD_TIMER(runtime_profile(), "ExprTime");
_get_results_timer = ADD_TIMER(runtime_profile(), "GetResultsTime");
_data_mem_tracker =
MemTracker::create_virtual_tracker(-1, "AggregationNode:Data", mem_tracker());
_intermediate_tuple_desc = state->desc_tbl().get_tuple_descriptor(_intermediate_tuple_id);
_output_tuple_desc = state->desc_tbl().get_tuple_descriptor(_output_tuple_id);
DCHECK_EQ(_intermediate_tuple_desc->slots().size(), _output_tuple_desc->slots().size());
RETURN_IF_ERROR(
VExpr::prepare(_probe_expr_ctxs, state, child(0)->row_desc(), expr_mem_tracker()));
_mem_pool = std::make_unique<MemPool>();
int j = _probe_expr_ctxs.size();
for (int i = 0; i < j; ++i) {
auto nullable_output = _output_tuple_desc->slots()[i]->is_nullable();
auto nullable_input = _probe_expr_ctxs[i]->root()->is_nullable();
if (nullable_output != nullable_input) {
DCHECK(nullable_output);
_make_nullable_keys.emplace_back(i);
}
}
for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++j) {
SlotDescriptor* intermediate_slot_desc = _intermediate_tuple_desc->slots()[j];
SlotDescriptor* output_slot_desc = _output_tuple_desc->slots()[j];
RETURN_IF_ERROR(_aggregate_evaluators[i]->prepare(state, child(0)->row_desc(),
_mem_pool.get(), intermediate_slot_desc,
output_slot_desc, mem_tracker()));
}
// set profile timer to evaluators
for (auto& evaluator : _aggregate_evaluators) {
evaluator->set_timer(_exec_timer, _merge_timer, _expr_timer);
}
_offsets_of_aggregate_states.resize(_aggregate_evaluators.size());
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) {
_offsets_of_aggregate_states[i] = _total_size_of_aggregate_states;
const auto& agg_function = _aggregate_evaluators[i]->function();
// aggreate states are aligned based on maximum requirement
_align_aggregate_states = std::max(_align_aggregate_states, agg_function->align_of_data());
_total_size_of_aggregate_states += agg_function->size_of_data();
// If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned.
if (i + 1 < _aggregate_evaluators.size()) {
size_t alignment_of_next_state =
_aggregate_evaluators[i + 1]->function()->align_of_data();
if ((alignment_of_next_state & (alignment_of_next_state - 1)) != 0) {
return Status::RuntimeError(fmt::format("Logical error: align_of_data is not 2^N"));
}
/// Extend total_size to next alignment requirement
/// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state.
_total_size_of_aggregate_states =
(_total_size_of_aggregate_states + alignment_of_next_state - 1) /
alignment_of_next_state * alignment_of_next_state;
}
}
if (_probe_expr_ctxs.empty()) {
_agg_data.init(AggregatedDataVariants::Type::without_key);
_agg_data.without_key = reinterpret_cast<AggregateDataPtr>(
_mem_pool->allocate(_total_size_of_aggregate_states));
if (_is_merge) {
_executor.execute = std::bind<Status>(&AggregationNode::_merge_without_key, this,
std::placeholders::_1);
} else {
_executor.execute = std::bind<Status>(&AggregationNode::_execute_without_key, this,
std::placeholders::_1);
}
if (_needs_finalize) {
_executor.get_result = std::bind<Status>(&AggregationNode::_get_without_key_result,
this, std::placeholders::_1,
std::placeholders::_2, std::placeholders::_3);
} else {
_executor.get_result = std::bind<Status>(&AggregationNode::_serialize_without_key, this,
std::placeholders::_1, std::placeholders::_2,
std::placeholders::_3);
}
_executor.update_memusage =
std::bind<void>(&AggregationNode::_update_memusage_without_key, this);
_executor.close = std::bind<void>(&AggregationNode::_close_without_key, this);
} else {
_init_hash_method(_probe_expr_ctxs);
if (_is_merge) {
_executor.execute = std::bind<Status>(&AggregationNode::_merge_with_serialized_key,
this, std::placeholders::_1);
} else {
_executor.execute = std::bind<Status>(&AggregationNode::_execute_with_serialized_key,
this, std::placeholders::_1);
}
if (_is_streaming_preagg) {
runtime_profile()->append_exec_option("Streaming Preaggregation");
_executor.pre_agg =
std::bind<Status>(&AggregationNode::_pre_agg_with_serialized_key, this,
std::placeholders::_1, std::placeholders::_2);
}
if (_needs_finalize) {
_executor.get_result = std::bind<Status>(
&AggregationNode::_get_with_serialized_key_result, this, std::placeholders::_1,
std::placeholders::_2, std::placeholders::_3);
} else {
_executor.get_result = std::bind<Status>(
&AggregationNode::_serialize_with_serialized_key_result, this,
std::placeholders::_1, std::placeholders::_2, std::placeholders::_3);
}
_executor.update_memusage =
std::bind<void>(&AggregationNode::_update_memusage_with_serialized_key, this);
_executor.close = std::bind<void>(&AggregationNode::_close_with_serialized_key, this);
}
return Status::OK();
}
Status AggregationNode::open(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
SCOPED_SWITCH_TASK_THREAD_LOCAL_MEM_TRACKER(mem_tracker());
SCOPED_SWITCH_THREAD_LOCAL_MEM_TRACKER_ERR_CB("aggregator, while execute open.");
RETURN_IF_ERROR(ExecNode::open(state));
RETURN_IF_ERROR(VExpr::open(_probe_expr_ctxs, state));
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
RETURN_IF_ERROR(_aggregate_evaluators[i]->open(state));
}
RETURN_IF_ERROR(_children[0]->open(state));
// Streaming preaggregations do all processing in GetNext().
if (_is_streaming_preagg) return Status::OK();
// move _create_agg_status to open not in during prepare,
// because during prepare and open thread is not the same one,
// this could cause unable to get JVM
if (_probe_expr_ctxs.empty()) {
_create_agg_status(_agg_data.without_key);
}
bool eos = false;
Block block;
while (!eos) {
RETURN_IF_CANCELLED(state);
release_block_memory(block);
RETURN_IF_ERROR(_children[0]->get_next(state, &block, &eos));
if (block.rows() == 0) {
continue;
}
RETURN_IF_ERROR(_executor.execute(&block));
_executor.update_memusage();
}
return Status::OK();
}
Status AggregationNode::get_next(RuntimeState* state, RowBatch* row_batch, bool* eos) {
return Status::NotSupported("Not Implemented Aggregation Node::get_next scalar");
}
Status AggregationNode::get_next(RuntimeState* state, Block* block, bool* eos) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
SCOPED_SWITCH_TASK_THREAD_LOCAL_EXISTED_MEM_TRACKER(mem_tracker());
SCOPED_SWITCH_THREAD_LOCAL_MEM_TRACKER_ERR_CB("aggregator, while execute get_next.");
if (_is_streaming_preagg) {
bool child_eos = false;
RETURN_IF_CANCELLED(state);
do {
release_block_memory(_preagg_block);
RETURN_IF_ERROR(_children[0]->get_next(state, &_preagg_block, &child_eos));
} while (_preagg_block.rows() == 0 && !child_eos);
if (_preagg_block.rows() != 0) {
RETURN_IF_ERROR(_executor.pre_agg(&_preagg_block, block));
} else {
RETURN_IF_ERROR(_executor.get_result(state, block, eos));
}
// pre stream agg need use _num_row_return to decide whether to do pre stream agg
_num_rows_returned += block->rows();
_make_nullable_output_key(block);
COUNTER_SET(_rows_returned_counter, _num_rows_returned);
} else {
RETURN_IF_ERROR(_executor.get_result(state, block, eos));
_make_nullable_output_key(block);
// dispose the having clause, should not be execute in prestreaming agg
RETURN_IF_ERROR(VExprContext::filter_block(_vconjunct_ctx_ptr, block, block->columns()));
reached_limit(block, eos);
}
_executor.update_memusage();
return Status::OK();
}
Status AggregationNode::close(RuntimeState* state) {
if (is_closed()) return Status::OK();
for (auto* aggregate_evaluator : _aggregate_evaluators) aggregate_evaluator->close(state);
VExpr::close(_probe_expr_ctxs, state);
if (_executor.close) _executor.close();
return ExecNode::close(state);
}
Status AggregationNode::_create_agg_status(AggregateDataPtr data) {
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->create(data + _offsets_of_aggregate_states[i]);
}
return Status::OK();
}
Status AggregationNode::_destroy_agg_status(AggregateDataPtr data) {
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->function()->destroy(data + _offsets_of_aggregate_states[i]);
}
return Status::OK();
}
Status AggregationNode::_get_without_key_result(RuntimeState* state, Block* block, bool* eos) {
DCHECK(_agg_data.without_key != nullptr);
block->clear();
*block = VectorizedUtils::create_empty_columnswithtypename(row_desc());
int agg_size = _aggregate_evaluators.size();
MutableColumns columns(agg_size);
std::vector<DataTypePtr> data_types(agg_size);
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
data_types[i] = _aggregate_evaluators[i]->function()->get_return_type();
columns[i] = data_types[i]->create_column();
}
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
auto column = columns[i].get();
_aggregate_evaluators[i]->insert_result_info(
_agg_data.without_key + _offsets_of_aggregate_states[i], column);
}
const auto& block_schema = block->get_columns_with_type_and_name();
DCHECK_EQ(block_schema.size(), columns.size());
for (int i = 0; i < block_schema.size(); ++i) {
const auto column_type = block_schema[i].type;
if (!column_type->equals(*data_types[i])) {
DCHECK(column_type->is_nullable());
DCHECK(((DataTypeNullable*)column_type.get())
->get_nested_type()
->equals(*data_types[i]));
DCHECK(!data_types[i]->is_nullable());
ColumnPtr ptr = std::move(columns[i]);
// unless `count`, other aggregate function dispose empty set should be null
// so here check the children row return
ptr = make_nullable(ptr, _children[0]->rows_returned() == 0);
columns[i] = std::move(*ptr).mutate();
}
}
block->set_columns(std::move(columns));
*eos = true;
return Status::OK();
}
Status AggregationNode::_serialize_without_key(RuntimeState* state, Block* block, bool* eos) {
// 1. `child(0)->rows_returned() == 0` mean not data from child
// in level two aggregation node should return NULL result
// level one aggregation node set `eos = true` return directly
if (UNLIKELY(_children[0]->rows_returned() == 0)) {
*eos = true;
return Status::OK();
}
block->clear();
DCHECK(_agg_data.without_key != nullptr);
int agg_size = _aggregate_evaluators.size();
MutableColumns value_columns(agg_size);
std::vector<DataTypePtr> data_types(agg_size);
// will serialize data to string column
std::vector<VectorBufferWriter> value_buffer_writers;
auto serialize_string_type = std::make_shared<DataTypeString>();
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
data_types[i] = serialize_string_type;
value_columns[i] = serialize_string_type->create_column();
value_buffer_writers.emplace_back(*reinterpret_cast<ColumnString*>(value_columns[i].get()));
}
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->function()->serialize(
_agg_data.without_key + _offsets_of_aggregate_states[i], value_buffer_writers[i]);
value_buffer_writers[i].commit();
}
{
ColumnsWithTypeAndName data_with_schema;
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
ColumnWithTypeAndName column_with_schema = {nullptr, data_types[i], ""};
data_with_schema.push_back(std::move(column_with_schema));
}
*block = Block(data_with_schema);
}
block->set_columns(std::move(value_columns));
*eos = true;
return Status::OK();
}
Status AggregationNode::_execute_without_key(Block* block) {
DCHECK(_agg_data.without_key != nullptr);
SCOPED_TIMER(_build_timer);
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->execute_single_add(
block, _agg_data.without_key + _offsets_of_aggregate_states[i], &_agg_arena_pool);
}
return Status::OK();
}
Status AggregationNode::_merge_without_key(Block* block) {
SCOPED_TIMER(_merge_timer);
DCHECK(_agg_data.without_key != nullptr);
std::unique_ptr<char[]> deserialize_buffer(new char[_total_size_of_aggregate_states]);
int rows = block->rows();
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
DCHECK(_aggregate_evaluators[i]->input_exprs_ctxs().size() == 1 &&
_aggregate_evaluators[i]->input_exprs_ctxs()[0]->root()->is_slot_ref());
int col_id =
((VSlotRef*)_aggregate_evaluators[i]->input_exprs_ctxs()[0]->root())->column_id();
if (_aggregate_evaluators[i]->is_merge()) {
auto column = block->get_by_position(col_id).column;
if (column->is_nullable()) {
column = ((ColumnNullable*)column.get())->get_nested_column_ptr();
}
for (int j = 0; j < rows; ++j) {
VectorBufferReader buffer_reader(((ColumnString*)(column.get()))->get_data_at(j));
_create_agg_status(deserialize_buffer.get());
_aggregate_evaluators[i]->function()->deserialize(
deserialize_buffer.get() + _offsets_of_aggregate_states[i], buffer_reader,
&_agg_arena_pool);
_aggregate_evaluators[i]->function()->merge(
_agg_data.without_key + _offsets_of_aggregate_states[i],
deserialize_buffer.get() + _offsets_of_aggregate_states[i],
&_agg_arena_pool);
_destroy_agg_status(deserialize_buffer.get());
}
} else {
_aggregate_evaluators[i]->execute_single_add(
block, _agg_data.without_key + _offsets_of_aggregate_states[i],
&_agg_arena_pool);
}
}
return Status::OK();
}
void AggregationNode::_update_memusage_without_key() {
_data_mem_tracker->consume(_agg_arena_pool.size() - _mem_usage_record.used_in_arena);
_mem_usage_record.used_in_arena = _agg_arena_pool.size();
}
void AggregationNode::_close_without_key() {
_destroy_agg_status(_agg_data.without_key);
release_tracker();
}
void AggregationNode::_make_nullable_output_key(Block* block) {
if (block->rows() != 0) {
for (auto cid : _make_nullable_keys) {
block->get_by_position(cid).column = make_nullable(block->get_by_position(cid).column);
block->get_by_position(cid).type = make_nullable(block->get_by_position(cid).type);
}
}
}
bool AggregationNode::_should_expand_preagg_hash_tables() {
if (!_should_expand_hash_table) return false;
return std::visit(
[&](auto&& agg_method) -> bool {
auto& hash_tbl = agg_method.data;
auto [ht_mem, ht_rows] =
std::pair {hash_tbl.get_buffer_size_in_bytes(), hash_tbl.size()};
// Need some rows in tables to have valid statistics.
if (ht_rows == 0) return true;
// Find the appropriate reduction factor in our table for the current hash table sizes.
int cache_level = 0;
while (cache_level + 1 < STREAMING_HT_MIN_REDUCTION_SIZE &&
ht_mem >= STREAMING_HT_MIN_REDUCTION[cache_level + 1].min_ht_mem) {
++cache_level;
}
// Compare the number of rows in the hash table with the number of input rows that
// were aggregated into it. Exclude passed through rows from this calculation since
// they were not in hash tables.
const int64_t input_rows = _children[0]->rows_returned();
const int64_t aggregated_input_rows = input_rows - _num_rows_returned;
// TODO chenhao
// const int64_t expected_input_rows = estimated_input_cardinality_ - num_rows_returned_;
double current_reduction = static_cast<double>(aggregated_input_rows) / ht_rows;
// TODO: workaround for IMPALA-2490: subplan node rows_returned counter may be
// inaccurate, which could lead to a divide by zero below.
if (aggregated_input_rows <= 0) return true;
// Extrapolate the current reduction factor (r) using the formula
// R = 1 + (N / n) * (r - 1), where R is the reduction factor over the full input data
// set, N is the number of input rows, excluding passed-through rows, and n is the
// number of rows inserted or merged into the hash tables. This is a very rough
// approximation but is good enough to be useful.
// TODO: consider collecting more statistics to better estimate reduction.
// double estimated_reduction = aggregated_input_rows >= expected_input_rows
// ? current_reduction
// : 1 + (expected_input_rows / aggregated_input_rows) * (current_reduction - 1);
double min_reduction =
STREAMING_HT_MIN_REDUCTION[cache_level].streaming_ht_min_reduction;
// COUNTER_SET(preagg_estimated_reduction_, estimated_reduction);
// COUNTER_SET(preagg_streaming_ht_min_reduction_, min_reduction);
// return estimated_reduction > min_reduction;
_should_expand_hash_table = current_reduction > min_reduction;
return _should_expand_hash_table;
},
_agg_data._aggregated_method_variant);
}
Status AggregationNode::_pre_agg_with_serialized_key(doris::vectorized::Block* in_block,
doris::vectorized::Block* out_block) {
SCOPED_TIMER(_build_timer);
DCHECK(!_probe_expr_ctxs.empty());
size_t key_size = _probe_expr_ctxs.size();
ColumnRawPtrs key_columns(key_size);
{
SCOPED_TIMER(_expr_timer);
for (size_t i = 0; i < key_size; ++i) {
int result_column_id = -1;
RETURN_IF_ERROR(_probe_expr_ctxs[i]->execute(in_block, &result_column_id));
in_block->get_by_position(result_column_id).column =
in_block->get_by_position(result_column_id)
.column->convert_to_full_column_if_const();
key_columns[i] = in_block->get_by_position(result_column_id).column.get();
}
}
int rows = in_block->rows();
PODArray<AggregateDataPtr> places(rows);
// Stop expanding hash tables if we're not reducing the input sufficiently. As our
// hash tables expand out of each level of cache hierarchy, every hash table lookup
// will take longer. We also may not be able to expand hash tables because of memory
// pressure. In either case we should always use the remaining space in the hash table
// to avoid wasting memory.
// But for fixed hash map, it never need to expand
bool ret_flag = false;
std::visit(
[&](auto&& agg_method) -> void {
if (auto& hash_tbl = agg_method.data; hash_tbl.add_elem_size_overflow(rows)) {
// do not try to do agg, just init and serialize directly return the out_block
if (!_should_expand_preagg_hash_tables()) {
ret_flag = true;
if (_streaming_pre_places.size() < rows) {
_streaming_pre_places.reserve(rows);
for (size_t i = _streaming_pre_places.size(); i < rows; ++i) {
_streaming_pre_places.emplace_back(_agg_arena_pool.aligned_alloc(
_total_size_of_aggregate_states, _align_aggregate_states));
}
}
for (size_t i = 0; i < rows; ++i) {
_create_agg_status(_streaming_pre_places[i]);
}
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->execute_batch_add(
in_block, _offsets_of_aggregate_states[i],
_streaming_pre_places.data(), &_agg_arena_pool);
}
// will serialize value data to string column
std::vector<VectorBufferWriter> value_buffer_writers;
bool mem_reuse = out_block->mem_reuse();
auto serialize_string_type = std::make_shared<DataTypeString>();
MutableColumns value_columns;
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
if (mem_reuse) {
value_columns.emplace_back(
std::move(*out_block->get_by_position(i + key_size).column)
.mutate());
} else {
// slot type of value it should always be string type
value_columns.emplace_back(serialize_string_type->create_column());
}
value_buffer_writers.emplace_back(
*reinterpret_cast<ColumnString*>(value_columns[i].get()));
}
for (size_t j = 0; j < rows; ++j) {
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->function()->serialize(
_streaming_pre_places[j] + _offsets_of_aggregate_states[i],
value_buffer_writers[i]);
value_buffer_writers[i].commit();
}
}
if (!mem_reuse) {
ColumnsWithTypeAndName columns_with_schema;
for (int i = 0; i < key_size; ++i) {
columns_with_schema.emplace_back(
key_columns[i]->clone_resized(rows),
_probe_expr_ctxs[i]->root()->data_type(),
_probe_expr_ctxs[i]->root()->expr_name());
}
for (int i = 0; i < value_columns.size(); ++i) {
columns_with_schema.emplace_back(std::move(value_columns[i]),
serialize_string_type, "");
}
out_block->swap(Block(columns_with_schema));
} else {
for (int i = 0; i < key_size; ++i) {
std::move(*out_block->get_by_position(i).column)
.mutate()
->insert_range_from(*key_columns[i], 0, rows);
}
}
}
}
},
_agg_data._aggregated_method_variant);
if (!ret_flag) {
std::visit(
[&](auto&& agg_method) -> void {
using HashMethodType = std::decay_t<decltype(agg_method)>;
using AggState = typename HashMethodType::State;
AggState state(key_columns, _probe_key_sz, nullptr);
/// For all rows.
for (size_t i = 0; i < rows; ++i) {
AggregateDataPtr aggregate_data = nullptr;
auto emplace_result =
state.emplace_key(agg_method.data, i, _agg_arena_pool);
/// If a new key is inserted, initialize the states of the aggregate functions, and possibly something related to the key.
if (emplace_result.is_inserted()) {
/// exception-safety - if you can not allocate memory or create states, then destructors will not be called.
emplace_result.set_mapped(nullptr);
aggregate_data = _agg_arena_pool.aligned_alloc(
_total_size_of_aggregate_states, _align_aggregate_states);
_create_agg_status(aggregate_data);
emplace_result.set_mapped(aggregate_data);
} else
aggregate_data = emplace_result.get_mapped();
places[i] = aggregate_data;
assert(places[i] != nullptr);
}
},
_agg_data._aggregated_method_variant);
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->execute_batch_add(in_block, _offsets_of_aggregate_states[i],
places.data(), &_agg_arena_pool);
}
}
return Status::OK();
}
Status AggregationNode::_execute_with_serialized_key(Block* block) {
SCOPED_TIMER(_build_timer);
DCHECK(!_probe_expr_ctxs.empty());
size_t key_size = _probe_expr_ctxs.size();
ColumnRawPtrs key_columns(key_size);
{
SCOPED_TIMER(_expr_timer);
for (size_t i = 0; i < key_size; ++i) {
int result_column_id = -1;
RETURN_IF_ERROR(_probe_expr_ctxs[i]->execute(block, &result_column_id));
block->get_by_position(result_column_id).column =
block->get_by_position(result_column_id)
.column->convert_to_full_column_if_const();
key_columns[i] = block->get_by_position(result_column_id).column.get();
}
}
int rows = block->rows();
PODArray<AggregateDataPtr> places(rows);
std::visit(
[&](auto&& agg_method) -> void {
using HashMethodType = std::decay_t<decltype(agg_method)>;
using AggState = typename HashMethodType::State;
AggState state(key_columns, _probe_key_sz, nullptr);
/// For all rows.
for (size_t i = 0; i < rows; ++i) {
AggregateDataPtr aggregate_data = nullptr;
auto emplace_result = state.emplace_key(agg_method.data, i, _agg_arena_pool);
/// If a new key is inserted, initialize the states of the aggregate functions, and possibly something related to the key.
if (emplace_result.is_inserted()) {
/// exception-safety - if you can not allocate memory or create states, then destructors will not be called.
emplace_result.set_mapped(nullptr);
aggregate_data = _agg_arena_pool.aligned_alloc(
_total_size_of_aggregate_states, _align_aggregate_states);
_create_agg_status(aggregate_data);
emplace_result.set_mapped(aggregate_data);
} else
aggregate_data = emplace_result.get_mapped();
places[i] = aggregate_data;
assert(places[i] != nullptr);
}
},
_agg_data._aggregated_method_variant);
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->execute_batch_add(block, _offsets_of_aggregate_states[i],
places.data(), &_agg_arena_pool);
}
return Status::OK();
}
Status AggregationNode::_get_with_serialized_key_result(RuntimeState* state, Block* block,
bool* eos) {
bool mem_reuse = block->mem_reuse();
auto column_withschema = VectorizedUtils::create_columns_with_type_and_name(row_desc());
int key_size = _probe_expr_ctxs.size();
MutableColumns key_columns;
for (int i = 0; i < key_size; ++i) {
if (!mem_reuse) {
key_columns.emplace_back(column_withschema[i].type->create_column());
} else {
key_columns.emplace_back(std::move(*block->get_by_position(i).column).mutate());
}
}
MutableColumns value_columns;
for (int i = key_size; i < column_withschema.size(); ++i) {
if (!mem_reuse) {
value_columns.emplace_back(column_withschema[i].type->create_column());
} else {
value_columns.emplace_back(std::move(*block->get_by_position(i).column).mutate());
}
}
SCOPED_TIMER(_get_results_timer);
std::visit(
[&](auto&& agg_method) -> void {
auto& data = agg_method.data;
auto& iter = agg_method.iterator;
agg_method.init_once();
while (iter != data.end() && key_columns[0]->size() < state->batch_size()) {
const auto& key = iter->get_first();
auto& mapped = iter->get_second();
agg_method.insert_key_into_columns(key, key_columns, _probe_key_sz);
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i)
_aggregate_evaluators[i]->insert_result_info(
mapped + _offsets_of_aggregate_states[i], value_columns[i].get());
++iter;
}
if (iter == data.end()) {
if (agg_method.data.has_null_key_data()) {
// only one key of group by support wrap null key
// here need additional processing logic on the null key / value
DCHECK(key_columns.size() == 1);
DCHECK(key_columns[0]->is_nullable());
if (key_columns[0]->size() < state->batch_size()) {
key_columns[0]->insert_data(nullptr, 0);
auto mapped = agg_method.data.get_null_key_data();
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i)
_aggregate_evaluators[i]->insert_result_info(
mapped + _offsets_of_aggregate_states[i],
value_columns[i].get());
*eos = true;
}
} else {
*eos = true;
}
}
},
_agg_data._aggregated_method_variant);
if (!mem_reuse) {
*block = column_withschema;
MutableColumns columns(block->columns());
for (int i = 0; i < block->columns(); ++i) {
if (i < key_size) {
columns[i] = std::move(key_columns[i]);
} else {
columns[i] = std::move(value_columns[i - key_size]);
}
}
block->set_columns(std::move(columns));
}
return Status::OK();
}
Status AggregationNode::_serialize_with_serialized_key_result(RuntimeState* state, Block* block,
bool* eos) {
int key_size = _probe_expr_ctxs.size();
int agg_size = _aggregate_evaluators.size();
MutableColumns value_columns(agg_size);
DataTypes value_data_types(agg_size);
bool mem_reuse = block->mem_reuse();
MutableColumns key_columns;
for (int i = 0; i < key_size; ++i) {
if (mem_reuse) {
key_columns.emplace_back(std::move(*block->get_by_position(i).column).mutate());
} else {
key_columns.emplace_back(_probe_expr_ctxs[i]->root()->data_type()->create_column());
}
}
// will serialize data to string column
std::vector<VectorBufferWriter> value_buffer_writers;
auto serialize_string_type = std::make_shared<DataTypeString>();
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
value_data_types[i] = serialize_string_type;
if (mem_reuse) {
value_columns[i] = std::move(*block->get_by_position(i + key_size).column).mutate();
} else {
value_columns[i] = serialize_string_type->create_column();
}
value_buffer_writers.emplace_back(*reinterpret_cast<ColumnString*>(value_columns[i].get()));
}
std::visit(
[&](auto&& agg_method) -> void {
agg_method.init_once();
auto& data = agg_method.data;
auto& iter = agg_method.iterator;
while (iter != data.end() && key_columns[0]->size() < state->batch_size()) {
const auto& key = iter->get_first();
auto& mapped = iter->get_second();
// insert keys
agg_method.insert_key_into_columns(key, key_columns, _probe_key_sz);
// serialize values
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->function()->serialize(
mapped + _offsets_of_aggregate_states[i], value_buffer_writers[i]);
value_buffer_writers[i].commit();
}
++iter;
}
if (iter == data.end()) {
if (agg_method.data.has_null_key_data()) {
DCHECK(key_columns.size() == 1);
DCHECK(key_columns[0]->is_nullable());
if (agg_method.data.has_null_key_data()) {
key_columns[0]->insert_data(nullptr, 0);
auto mapped = agg_method.data.get_null_key_data();
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->function()->serialize(
mapped + _offsets_of_aggregate_states[i],
value_buffer_writers[i]);
value_buffer_writers[i].commit();
}
*eos = true;
}
} else {
*eos = true;
}
}
},
_agg_data._aggregated_method_variant);
if (!mem_reuse) {
ColumnsWithTypeAndName columns_with_schema;
for (int i = 0; i < key_size; ++i) {
columns_with_schema.emplace_back(std::move(key_columns[i]),
_probe_expr_ctxs[i]->root()->data_type(),
_probe_expr_ctxs[i]->root()->expr_name());
}
for (int i = 0; i < agg_size; ++i) {
columns_with_schema.emplace_back(std::move(value_columns[i]), value_data_types[i], "");
}
*block = Block(columns_with_schema);
}
return Status::OK();
}
Status AggregationNode::_merge_with_serialized_key(Block* block) {
SCOPED_TIMER(_merge_timer);
size_t key_size = _probe_expr_ctxs.size();
ColumnRawPtrs key_columns(key_size);
for (size_t i = 0; i < key_size; ++i) {
int result_column_id = -1;
RETURN_IF_ERROR(_probe_expr_ctxs[i]->execute(block, &result_column_id));
key_columns[i] = block->get_by_position(result_column_id).column.get();
}
int rows = block->rows();
PODArray<AggregateDataPtr> places(rows);
std::visit(
[&](auto&& agg_method) -> void {
using HashMethodType = std::decay_t<decltype(agg_method)>;
using AggState = typename HashMethodType::State;
AggState state(key_columns, _probe_key_sz, nullptr);
/// For all rows.
for (size_t i = 0; i < rows; ++i) {
AggregateDataPtr aggregate_data = nullptr;
auto emplace_result = state.emplace_key(agg_method.data, i, _agg_arena_pool);
/// If a new key is inserted, initialize the states of the aggregate functions, and possibly something related to the key.
if (emplace_result.is_inserted()) {
/// exception-safety - if you can not allocate memory or create states, then destructors will not be called.
emplace_result.set_mapped(nullptr);
aggregate_data = _agg_arena_pool.aligned_alloc(
_total_size_of_aggregate_states, _align_aggregate_states);
_create_agg_status(aggregate_data);
emplace_result.set_mapped(aggregate_data);
} else
aggregate_data = emplace_result.get_mapped();
places[i] = aggregate_data;
assert(places[i] != nullptr);
}
},
_agg_data._aggregated_method_variant);
std::unique_ptr<char[]> deserialize_buffer(new char[_total_size_of_aggregate_states]);
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
DCHECK(_aggregate_evaluators[i]->input_exprs_ctxs().size() == 1 &&
_aggregate_evaluators[i]->input_exprs_ctxs()[0]->root()->is_slot_ref());
int col_id =
((VSlotRef*)_aggregate_evaluators[i]->input_exprs_ctxs()[0]->root())->column_id();
if (_aggregate_evaluators[i]->is_merge()) {
auto column = block->get_by_position(col_id).column;
if (column->is_nullable()) {
column = ((ColumnNullable*)column.get())->get_nested_column_ptr();
}
for (int j = 0; j < rows; ++j) {
VectorBufferReader buffer_reader(((ColumnString*)(column.get()))->get_data_at(j));
_create_agg_status(deserialize_buffer.get());
_aggregate_evaluators[i]->function()->deserialize(
deserialize_buffer.get() + _offsets_of_aggregate_states[i], buffer_reader,
&_agg_arena_pool);
_aggregate_evaluators[i]->function()->merge(
places.data()[j] + _offsets_of_aggregate_states[i],
deserialize_buffer.get() + _offsets_of_aggregate_states[i],
&_agg_arena_pool);
_destroy_agg_status(deserialize_buffer.get());
}
} else {
_aggregate_evaluators[i]->execute_batch_add(block, _offsets_of_aggregate_states[i],
places.data(), &_agg_arena_pool);
}
}
return Status::OK();
}
void AggregationNode::_update_memusage_with_serialized_key() {
std::visit(
[&](auto&& agg_method) -> void {
auto& data = agg_method.data;
_data_mem_tracker->consume(_agg_arena_pool.size() -
_mem_usage_record.used_in_arena);
_data_mem_tracker->consume(data.get_buffer_size_in_bytes() -
_mem_usage_record.used_in_state);
_mem_usage_record.used_in_state = data.get_buffer_size_in_bytes();
_mem_usage_record.used_in_arena = _agg_arena_pool.size();
},
_agg_data._aggregated_method_variant);
}
void AggregationNode::_close_with_serialized_key() {
std::visit(
[&](auto&& agg_method) -> void {
auto& data = agg_method.data;
data.for_each_mapped([&](auto& mapped) {
if (mapped) {
_destroy_agg_status(mapped);
mapped = nullptr;
}
});
},
_agg_data._aggregated_method_variant);
release_tracker();
}
void AggregationNode::release_tracker() {
_data_mem_tracker->release(_mem_usage_record.used_in_state + _mem_usage_record.used_in_arena);
}
} // namespace doris::vectorized