Files
doris/be/src/olap/memtable_flush_executor.cpp

237 lines
9.0 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "olap/memtable_flush_executor.h"
#include <gen_cpp/olap_file.pb.h>
#include <algorithm>
#include <cstddef>
#include <ostream>
#include "common/config.h"
#include "common/logging.h"
#include "common/signal_handler.h"
#include "olap/memtable.h"
#include "olap/rowset/rowset_writer.h"
#include "util/doris_metrics.h"
#include "util/metrics.h"
#include "util/stopwatch.hpp"
#include "util/time.h"
namespace doris {
using namespace ErrorCode;
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(flush_thread_pool_queue_size, MetricUnit::NOUNIT);
DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(flush_thread_pool_thread_num, MetricUnit::NOUNIT);
bvar::Adder<int64_t> g_flush_task_num("memtable_flush_task_num");
class MemtableFlushTask final : public Runnable {
public:
MemtableFlushTask(FlushToken* flush_token, std::unique_ptr<MemTable> memtable,
int32_t segment_id, int64_t submit_task_time)
: _flush_token(flush_token),
_memtable(std::move(memtable)),
_segment_id(segment_id),
_submit_task_time(submit_task_time) {
g_flush_task_num << 1;
}
~MemtableFlushTask() override { g_flush_task_num << -1; }
void run() override {
_flush_token->_flush_memtable(_memtable.get(), _segment_id, _submit_task_time);
_memtable.reset();
}
private:
FlushToken* _flush_token;
std::unique_ptr<MemTable> _memtable;
int32_t _segment_id;
int64_t _submit_task_time;
};
std::ostream& operator<<(std::ostream& os, const FlushStatistic& stat) {
os << "(flush time(ms)=" << stat.flush_time_ns / NANOS_PER_MILLIS
<< ", flush wait time(ms)=" << stat.flush_wait_time_ns / NANOS_PER_MILLIS
<< ", running flush count=" << stat.flush_running_count
<< ", finish flush count=" << stat.flush_finish_count
<< ", flush bytes: " << stat.flush_size_bytes
<< ", flush disk bytes: " << stat.flush_disk_size_bytes << ")";
return os;
}
Status FlushToken::submit(std::unique_ptr<MemTable> mem_table) {
{
std::shared_lock rdlk(_flush_status_lock);
if (!_flush_status.ok()) {
return _flush_status;
}
}
if (mem_table == nullptr || mem_table->empty()) {
return Status::OK();
}
int64_t submit_task_time = MonotonicNanos();
auto task = std::make_shared<MemtableFlushTask>(
this, std::move(mem_table), _rowset_writer->allocate_segment_id(), submit_task_time);
_stats.flush_running_count++;
return _flush_token->submit(std::move(task));
}
void FlushToken::cancel() {
_flush_token->shutdown();
}
Status FlushToken::wait() {
_flush_token->wait();
{
std::shared_lock rdlk(_flush_status_lock);
if (!_flush_status.ok()) {
return _flush_status;
}
}
return Status::OK();
}
Status FlushToken::_do_flush_memtable(MemTable* memtable, int32_t segment_id, int64_t* flush_size) {
VLOG_CRITICAL << "begin to flush memtable for tablet: " << memtable->tablet_id()
<< ", memsize: " << memtable->memory_usage()
<< ", rows: " << memtable->stat().raw_rows;
int64_t duration_ns;
SCOPED_RAW_TIMER(&duration_ns);
signal::set_signal_task_id(_rowset_writer->load_id());
std::unique_ptr<vectorized::Block> block = memtable->to_block();
{
SCOPED_CONSUME_MEM_TRACKER(memtable->flush_mem_tracker());
SKIP_MEMORY_CHECK(RETURN_IF_ERROR(
_rowset_writer->flush_memtable(block.get(), segment_id, flush_size)));
}
_memtable_stat += memtable->stat();
DorisMetrics::instance()->memtable_flush_total->increment(1);
DorisMetrics::instance()->memtable_flush_duration_us->increment(duration_ns / 1000);
VLOG_CRITICAL << "after flush memtable for tablet: " << memtable->tablet_id()
<< ", flushsize: " << *flush_size;
return Status::OK();
}
void FlushToken::_flush_memtable(MemTable* mem_table, int32_t segment_id,
int64_t submit_task_time) {
uint64_t flush_wait_time_ns = MonotonicNanos() - submit_task_time;
_stats.flush_wait_time_ns += flush_wait_time_ns;
// If previous flush has failed, return directly
{
std::shared_lock rdlk(_flush_status_lock);
if (!_flush_status.ok()) {
return;
}
}
MonotonicStopWatch timer;
timer.start();
size_t memory_usage = mem_table->memory_usage();
int64_t flush_size;
Status s = _do_flush_memtable(mem_table, segment_id, &flush_size);
{
std::shared_lock rdlk(_flush_status_lock);
if (!_flush_status.ok()) {
return;
}
}
if (!s.ok()) {
std::lock_guard wrlk(_flush_status_lock);
LOG(WARNING) << "Flush memtable failed with res = " << s;
_flush_status = s;
return;
}
VLOG_CRITICAL << "flush memtable wait time:" << flush_wait_time_ns
<< "(ns), flush memtable cost: " << timer.elapsed_time()
<< "(ns), running count: " << _stats.flush_running_count
<< ", finish count: " << _stats.flush_finish_count
<< ", mem size: " << memory_usage << ", disk size: " << flush_size;
_stats.flush_time_ns += timer.elapsed_time();
_stats.flush_finish_count++;
_stats.flush_running_count--;
_stats.flush_size_bytes += mem_table->memory_usage();
_stats.flush_disk_size_bytes += flush_size;
}
void MemTableFlushExecutor::init(const std::vector<DataDir*>& data_dirs) {
int32_t data_dir_num = data_dirs.size();
size_t min_threads = std::max(1, config::flush_thread_num_per_store);
size_t max_threads = data_dir_num * min_threads;
static_cast<void>(ThreadPoolBuilder("MemTableFlushThreadPool")
.set_min_threads(min_threads)
.set_max_threads(max_threads)
.build(&_flush_pool));
min_threads = std::max(1, config::high_priority_flush_thread_num_per_store);
max_threads = data_dir_num * min_threads;
static_cast<void>(ThreadPoolBuilder("MemTableHighPriorityFlushThreadPool")
.set_min_threads(min_threads)
.set_max_threads(max_threads)
.build(&_high_prio_flush_pool));
_register_metrics();
}
// NOTE: we use SERIAL mode here to ensure all mem-tables from one tablet are flushed in order.
Status MemTableFlushExecutor::create_flush_token(std::unique_ptr<FlushToken>& flush_token,
RowsetWriter* rowset_writer, bool should_serial,
bool is_high_priority) {
if (!is_high_priority) {
if (rowset_writer->type() == BETA_ROWSET && !should_serial) {
// beta rowset can be flush in CONCURRENT, because each memtable using a new segment writer.
flush_token = std::make_unique<FlushToken>(
_flush_pool->new_token(ThreadPool::ExecutionMode::CONCURRENT));
} else {
// alpha rowset do not support flush in CONCURRENT.
flush_token = std::make_unique<FlushToken>(
_flush_pool->new_token(ThreadPool::ExecutionMode::SERIAL));
}
} else {
if (rowset_writer->type() == BETA_ROWSET && !should_serial) {
// beta rowset can be flush in CONCURRENT, because each memtable using a new segment writer.
flush_token = std::make_unique<FlushToken>(
_high_prio_flush_pool->new_token(ThreadPool::ExecutionMode::CONCURRENT));
} else {
// alpha rowset do not support flush in CONCURRENT.
flush_token = std::make_unique<FlushToken>(
_high_prio_flush_pool->new_token(ThreadPool::ExecutionMode::SERIAL));
}
}
flush_token->set_rowset_writer(rowset_writer);
return Status::OK();
}
void MemTableFlushExecutor::_register_metrics() {
REGISTER_HOOK_METRIC(flush_thread_pool_queue_size,
[this]() { return _flush_pool->get_queue_size(); });
REGISTER_HOOK_METRIC(flush_thread_pool_thread_num,
[this]() { return _flush_pool->num_threads(); })
}
void MemTableFlushExecutor::_deregister_metrics() {
DEREGISTER_HOOK_METRIC(flush_thread_pool_queue_size);
DEREGISTER_HOOK_METRIC(flush_thread_pool_thread_num);
}
} // namespace doris