868 lines
36 KiB
C++
868 lines
36 KiB
C++
// Copyright 2005 Google Inc.
|
|
//
|
|
// #status: RECOMMENDED
|
|
// #category: maps
|
|
// #summary: Utility functions for use with map-like containers.
|
|
//
|
|
// This file provides utility functions for use with STL map-like data
|
|
// structures, such as std::map and hash_map. Some functions will also work with
|
|
// sets, such as ContainsKey().
|
|
//
|
|
// The main functions in this file fall into the following categories:
|
|
//
|
|
// - Find*()
|
|
// - Contains*()
|
|
// - Insert*()
|
|
// - Lookup*()
|
|
//
|
|
// These functions often have "...OrDie" or "...OrDieNoPrint" variants. These
|
|
// variants will crash the process with a CHECK() failure on error, including
|
|
// the offending key/data in the log message. The NoPrint variants will not
|
|
// include the key/data in the log output under the assumption that it's not a
|
|
// printable type.
|
|
//
|
|
// Most functions are fairly self explanatory from their names, with the
|
|
// exception of Find*() vs Lookup*(). The Find functions typically use the map's
|
|
// .find() member function to locate and return the map's value type. The
|
|
// Lookup*() functions typically use the map's .insert() (yes, insert) member
|
|
// function to insert the given value if necessary and returns (usually a
|
|
// reference to) the map's value type for the found item.
|
|
//
|
|
// See the per-function comments for specifics.
|
|
//
|
|
// There are also a handful of functions for doing other miscellaneous things.
|
|
//
|
|
// A note on terminology:
|
|
//
|
|
// Map-like containers are collections of pairs. Like all STL containers they
|
|
// contain a few standard typedefs identifying the types of data they contain.
|
|
// Given the following map declaration:
|
|
//
|
|
// map<string, int> my_map;
|
|
//
|
|
// the notable typedefs would be as follows:
|
|
//
|
|
// - key_type -- string
|
|
// - value_type -- pair<const string, int>
|
|
// - mapped_type -- int
|
|
//
|
|
// Note that the map above contains two types of "values": the key-value pairs
|
|
// themselves (value_type) and the values within the key-value pairs
|
|
// (mapped_type). A value_type consists of a key_type and a mapped_type.
|
|
//
|
|
// The documentation below is written for programmers thinking in terms of keys
|
|
// and the (mapped_type) values associated with a given key. For example, the
|
|
// statement
|
|
//
|
|
// my_map["foo"] = 3;
|
|
//
|
|
// has a key of "foo" (type: string) with a value of 3 (type: int).
|
|
//
|
|
|
|
#pragma once
|
|
|
|
#include <glog/logging.h>
|
|
#include <stddef.h>
|
|
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "gutil/logging-inl.h"
|
|
|
|
//
|
|
// Find*()
|
|
//
|
|
|
|
// Returns a const reference to the value associated with the given key if it
|
|
// exists. Crashes otherwise.
|
|
//
|
|
// This is intended as a replacement for operator[] as an rvalue (for reading)
|
|
// when the key is guaranteed to exist.
|
|
//
|
|
// operator[] for lookup is discouraged for several reasons:
|
|
// * It has a side-effect of inserting missing keys
|
|
// * It is not thread-safe (even when it is not inserting, it can still
|
|
// choose to resize the underlying storage)
|
|
// * It invalidates iterators (when it chooses to resize)
|
|
// * It default constructs a value object even if it doesn't need to
|
|
//
|
|
// This version assumes the key is printable, and includes it in the fatal log
|
|
// message.
|
|
template <class Collection>
|
|
const typename Collection::mapped_type& FindOrDie(const Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
CHECK(it != collection.end()) << "Map key not found: " << key;
|
|
return it->second;
|
|
}
|
|
|
|
// Same as above, but returns a non-const reference.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& FindOrDie(Collection& collection, // NOLINT
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
CHECK(it != collection.end()) << "Map key not found: " << key;
|
|
return it->second;
|
|
}
|
|
|
|
// Same as FindOrDie above, but doesn't log the key on failure.
|
|
template <class Collection>
|
|
const typename Collection::mapped_type& FindOrDieNoPrint(const Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
typename Collection::const_iterator it = collection.find(key);
|
|
CHECK(it != collection.end()) << "Map key not found";
|
|
return it->second;
|
|
}
|
|
|
|
// Same as above, but returns a non-const reference.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& FindOrDieNoPrint(Collection& collection, // NOLINT
|
|
const typename Collection::key_type& key) {
|
|
typename Collection::iterator it = collection.find(key);
|
|
CHECK(it != collection.end()) << "Map key not found";
|
|
return it->second;
|
|
}
|
|
|
|
// Returns a const reference to the value associated with the given key if it
|
|
// exists, otherwise a const reference to the provided default value is
|
|
// returned.
|
|
//
|
|
// WARNING: If a temporary object is passed as the default "value," this
|
|
// function will return a reference to that temporary object, which will be
|
|
// destroyed by the end of the statement. Specifically, if you have a map with
|
|
// string values, and you pass a char* as the default "value," either use the
|
|
// returned value immediately or store it in a string (not string&). Details:
|
|
template <class Collection>
|
|
const typename Collection::mapped_type& FindWithDefault(
|
|
const Collection& collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& value) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return value;
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
// Returns a pointer to the const value associated with the given key if it
|
|
// exists, or NULL otherwise.
|
|
template <class Collection>
|
|
const typename Collection::mapped_type* FindOrNull(const Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return 0;
|
|
}
|
|
return &it->second;
|
|
}
|
|
|
|
// Same as above but returns a pointer to the non-const value.
|
|
template <class Collection>
|
|
typename Collection::mapped_type* FindOrNull(Collection& collection, // NOLINT
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return 0;
|
|
}
|
|
return &it->second;
|
|
}
|
|
|
|
// Returns a pointer to the const value associated with the greatest key
|
|
// that's less than or equal to the given key, or NULL if no such key exists.
|
|
template <class Collection>
|
|
const typename Collection::mapped_type* FindFloorOrNull(const Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.upper_bound(key);
|
|
if (it == collection.begin()) {
|
|
return 0;
|
|
}
|
|
return &(--it)->second;
|
|
}
|
|
|
|
// Same as above but returns a pointer to the non-const value.
|
|
template <class Collection>
|
|
typename Collection::mapped_type* FindFloorOrNull(Collection& collection, // NOLINT
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.upper_bound(key);
|
|
if (it == collection.begin()) {
|
|
return 0;
|
|
}
|
|
return &(--it)->second;
|
|
}
|
|
|
|
// Returns a const-reference to the value associated with the greatest key
|
|
// that's less than or equal to the given key, or crashes if it does not exist.
|
|
template <class Collection>
|
|
const typename Collection::mapped_type& FindFloorOrDie(const Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.upper_bound(key);
|
|
CHECK(it != collection.begin());
|
|
return (--it)->second;
|
|
}
|
|
|
|
// Same as above, but returns a non-const reference.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& FindFloorOrDie(Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.upper_bound(key);
|
|
CHECK(it != collection.begin());
|
|
return (--it)->second;
|
|
}
|
|
|
|
// Returns the pointer value associated with the given key. If none is found,
|
|
// NULL is returned. The function is designed to be used with a map of keys to
|
|
// pointers.
|
|
//
|
|
// This function does not distinguish between a missing key and a key mapped
|
|
// to a NULL value.
|
|
template <class Collection>
|
|
typename Collection::mapped_type FindPtrOrNull(const Collection& collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return typename Collection::mapped_type(0);
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
// Same as above, except takes non-const reference to collection.
|
|
//
|
|
// This function is needed for containers that propagate constness to the
|
|
// pointee, such as boost::ptr_map.
|
|
template <class Collection>
|
|
typename Collection::mapped_type FindPtrOrNull(Collection& collection, // NOLINT
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return typename Collection::mapped_type(0);
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
// FindPtrOrNull like function for maps whose value is a smart pointer like shared_ptr or
|
|
// unique_ptr.
|
|
// Returns the raw pointer contained in the smart pointer for the first found key, if it exists,
|
|
// or null if it doesn't.
|
|
template <class Collection>
|
|
typename Collection::mapped_type::element_type* FindPointeeOrNull(
|
|
const Collection& collection, // NOLINT,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return nullptr;
|
|
}
|
|
return it->second.get();
|
|
}
|
|
|
|
// Finds the value associated with the given key and copies it to *value (if not
|
|
// NULL). Returns false if the key was not found, true otherwise.
|
|
template <class Collection, class Key, class Value>
|
|
bool FindCopy(const Collection& collection, const Key& key, Value* const value) {
|
|
auto it = collection.find(key);
|
|
if (it == collection.end()) {
|
|
return false;
|
|
}
|
|
if (value) {
|
|
*value = it->second;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Contains*()
|
|
//
|
|
|
|
// Returns true iff the given collection contains the given key.
|
|
template <class Collection, class Key>
|
|
bool ContainsKey(const Collection& collection, const Key& key) {
|
|
return collection.find(key) != collection.end();
|
|
}
|
|
|
|
// Returns true iff the given collection contains the given key-value pair.
|
|
template <class Collection, class Key, class Value>
|
|
bool ContainsKeyValuePair(const Collection& collection, const Key& key, const Value& value) {
|
|
typedef typename Collection::const_iterator const_iterator;
|
|
std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
|
|
for (const_iterator it = range.first; it != range.second; ++it) {
|
|
if (it->second == value) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Insert*()
|
|
//
|
|
|
|
// Inserts the given key-value pair into the collection. Returns true if the
|
|
// given key didn't previously exist. If the given key already existed in the
|
|
// map, its value is changed to the given "value" and false is returned.
|
|
template <class Collection>
|
|
bool InsertOrUpdate(Collection* const collection, const typename Collection::value_type& vt) {
|
|
std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
|
if (!ret.second) {
|
|
// update
|
|
ret.first->second = vt.second;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Same as above, except that the key and value are passed separately.
|
|
template <class Collection>
|
|
bool InsertOrUpdate(Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& value) {
|
|
return InsertOrUpdate(collection, typename Collection::value_type(key, value));
|
|
}
|
|
|
|
// Inserts/updates all the key-value pairs from the range defined by the
|
|
// iterators "first" and "last" into the given collection.
|
|
template <class Collection, class InputIterator>
|
|
void InsertOrUpdateMany(Collection* const collection, InputIterator first, InputIterator last) {
|
|
for (; first != last; ++first) {
|
|
InsertOrUpdate(collection, *first);
|
|
}
|
|
}
|
|
|
|
// Change the value associated with a particular key in a map or hash_map
|
|
// of the form map<Key, Value*> which owns the objects pointed to by the
|
|
// value pointers. If there was an existing value for the key, it is deleted.
|
|
// True indicates an insert took place, false indicates an update + delete.
|
|
template <class Collection>
|
|
bool InsertAndDeleteExisting(Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& value) {
|
|
std::pair<typename Collection::iterator, bool> ret =
|
|
collection->insert(typename Collection::value_type(key, value));
|
|
if (!ret.second) {
|
|
delete ret.first->second;
|
|
ret.first->second = value;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Inserts the given key and value into the given collection iff the given key
|
|
// did NOT already exist in the collection. If the key previously existed in the
|
|
// collection, the value is not changed. Returns true if the key-value pair was
|
|
// inserted; returns false if the key was already present.
|
|
template <class Collection>
|
|
bool InsertIfNotPresent(Collection* const collection, const typename Collection::value_type& vt) {
|
|
return collection->insert(vt).second;
|
|
}
|
|
|
|
// Same as above except the key and value are passed separately.
|
|
template <class Collection>
|
|
bool InsertIfNotPresent(Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& value) {
|
|
return InsertIfNotPresent(collection, typename Collection::value_type(key, value));
|
|
}
|
|
|
|
// Same as above except dies if the key already exists in the collection.
|
|
template <class Collection>
|
|
void InsertOrDie(Collection* const collection, const typename Collection::value_type& value) {
|
|
CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value;
|
|
}
|
|
|
|
// Same as above except doesn't log the value on error.
|
|
template <class Collection>
|
|
void InsertOrDieNoPrint(Collection* const collection,
|
|
const typename Collection::value_type& value) {
|
|
CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
|
|
}
|
|
|
|
// Inserts the key-value pair into the collection. Dies if key was already
|
|
// present.
|
|
template <class Collection>
|
|
void InsertOrDie(Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& data) {
|
|
CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key: " << key;
|
|
}
|
|
|
|
// Same as above except deson't log the key on error.
|
|
template <class Collection>
|
|
void InsertOrDieNoPrint(Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& data) {
|
|
CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
|
|
}
|
|
|
|
// Inserts a new key and default-initialized value. Dies if the key was already
|
|
// present. Returns a reference to the value. Example usage:
|
|
//
|
|
// map<int, SomeProto> m;
|
|
// SomeProto& proto = InsertKeyOrDie(&m, 3);
|
|
// proto.set_field("foo");
|
|
template <class Collection>
|
|
typename Collection::mapped_type& InsertKeyOrDie(Collection* const collection,
|
|
const typename Collection::key_type& key) {
|
|
typedef typename Collection::value_type value_type;
|
|
std::pair<typename Collection::iterator, bool> res =
|
|
collection->insert(value_type(key, typename Collection::mapped_type()));
|
|
CHECK(res.second) << "duplicate key: " << key;
|
|
return res.first->second;
|
|
}
|
|
|
|
//
|
|
// Emplace*()
|
|
//
|
|
template <class Collection, class... Args>
|
|
bool EmplaceIfNotPresent(Collection* const collection, Args&&... args) {
|
|
return collection->emplace(std::forward<Args>(args)...).second;
|
|
}
|
|
|
|
// Emplaces the given key-value pair into the collection. Returns true if the
|
|
// given key didn't previously exist. If the given key already existed in the
|
|
// map, its value is changed to the given "value" and false is returned.
|
|
template <class Collection>
|
|
bool EmplaceOrUpdate(Collection* const collection, const typename Collection::key_type& key,
|
|
typename Collection::mapped_type&& value) {
|
|
typedef typename Collection::mapped_type mapped_type;
|
|
auto it = collection->find(key);
|
|
if (it == collection->end()) {
|
|
collection->emplace(key, std::forward<mapped_type>(value));
|
|
return true;
|
|
}
|
|
it->second = std::forward<mapped_type>(value);
|
|
return false;
|
|
}
|
|
|
|
template <class Collection, class... Args>
|
|
void EmplaceOrDie(Collection* const collection, Args&&... args) {
|
|
CHECK(EmplaceIfNotPresent(collection, std::forward<Args>(args)...)) << "duplicate value";
|
|
}
|
|
|
|
//
|
|
// Lookup*()
|
|
//
|
|
|
|
// Looks up a given key and value pair in a collection and inserts the key-value
|
|
// pair if it's not already present. Returns a reference to the value associated
|
|
// with the key.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& LookupOrInsert(Collection* const collection,
|
|
const typename Collection::value_type& vt) {
|
|
return collection->insert(vt).first->second;
|
|
}
|
|
|
|
// Same as above except the key-value are passed separately.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& LookupOrInsert(Collection* const collection,
|
|
const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& value) {
|
|
return LookupOrInsert(collection, typename Collection::value_type(key, value));
|
|
}
|
|
|
|
// It's similar to LookupOrInsert() but uses the emplace and r-value mechanics
|
|
// to achieve the desired results. The constructor of the new element is called
|
|
// with exactly the same arguments as supplied to emplace, forwarded via
|
|
// std::forward<Args>(args). The element may be constructed even if there
|
|
// already is an element with the same key in the container, in which case the
|
|
// newly constructed element will be destroyed immediately.
|
|
// For details, see
|
|
// https://en.cppreference.com/w/cpp/container/map/emplace
|
|
// https://en.cppreference.com/w/cpp/container/unordered_map/emplace
|
|
template <class Collection, class... Args>
|
|
typename Collection::mapped_type& LookupOrEmplace(Collection* const collection, Args&&... args) {
|
|
return collection->emplace(std::forward<Args>(args)...).first->second;
|
|
}
|
|
|
|
// Counts the number of equivalent elements in the given "sequence", and stores
|
|
// the results in "count_map" with element as the key and count as the value.
|
|
//
|
|
// Example:
|
|
// vector<string> v = {"a", "b", "c", "a", "b"};
|
|
// map<string, int> m;
|
|
// AddTokenCounts(v, 1, &m);
|
|
// assert(m["a"] == 2);
|
|
// assert(m["b"] == 2);
|
|
// assert(m["c"] == 1);
|
|
template <typename Sequence, typename Collection>
|
|
void AddTokenCounts(const Sequence& sequence, const typename Collection::mapped_type& increment,
|
|
Collection* const count_map) {
|
|
for (typename Sequence::const_iterator it = sequence.begin(); it != sequence.end(); ++it) {
|
|
typename Collection::mapped_type& value =
|
|
LookupOrInsert(count_map, *it, typename Collection::mapped_type());
|
|
value += increment;
|
|
}
|
|
}
|
|
|
|
// Helpers for LookupOrInsertNew(), needed to create a new value type when the
|
|
// type itself is a pointer, i.e., these extract the actual type from a pointer.
|
|
template <class T>
|
|
void MapUtilAssignNewDefaultInstance(T** location) {
|
|
*location = new T();
|
|
}
|
|
|
|
template <class T, class Arg>
|
|
void MapUtilAssignNewInstance(T** location, const Arg& arg) {
|
|
*location = new T(arg);
|
|
}
|
|
|
|
// Returns a reference to the value associated with key. If not found, a value
|
|
// is default constructed on the heap and added to the map.
|
|
//
|
|
// This function is useful for containers of the form map<Key, Value*>, where
|
|
// inserting a new key, value pair involves constructing a new heap-allocated
|
|
// Value, and storing a pointer to that in the collection.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& LookupOrInsertNew(Collection* const collection,
|
|
const typename Collection::key_type& key) {
|
|
std::pair<typename Collection::iterator, bool> ret =
|
|
collection->insert(typename Collection::value_type(
|
|
key, static_cast<typename Collection::mapped_type>(NULL)));
|
|
if (ret.second) {
|
|
// This helper is needed to 'extract' the Value type from the type of the
|
|
// container value, which is (Value*).
|
|
MapUtilAssignNewDefaultInstance(&(ret.first->second));
|
|
}
|
|
return ret.first->second;
|
|
}
|
|
|
|
// Same as above but constructs the value using the single-argument constructor
|
|
// and the given "arg".
|
|
template <class Collection, class Arg>
|
|
typename Collection::mapped_type& LookupOrInsertNew(Collection* const collection,
|
|
const typename Collection::key_type& key,
|
|
const Arg& arg) {
|
|
std::pair<typename Collection::iterator, bool> ret =
|
|
collection->insert(typename Collection::value_type(
|
|
key, static_cast<typename Collection::mapped_type>(NULL)));
|
|
if (ret.second) {
|
|
// This helper is needed to 'extract' the Value type from the type of the
|
|
// container value, which is (Value*).
|
|
MapUtilAssignNewInstance(&(ret.first->second), arg);
|
|
}
|
|
return ret.first->second;
|
|
}
|
|
|
|
// Lookup of linked/shared pointers is used in two scenarios:
|
|
//
|
|
// Use LookupOrInsertSharedPtr if the container does not own the elements
|
|
// for their whole lifetime. This is typically the case when a reader allows
|
|
// parallel updates to the container. In this case a Mutex only needs to lock
|
|
// container operations, but all element operations must be performed on the
|
|
// shared pointer. Finding an element must be performed using FindPtr*() and
|
|
// cannot be done with FindLinkedPtr*() even though it compiles.
|
|
|
|
// Lookup a key in a map or hash_map whose values are shared_ptrs. If it is
|
|
// missing, set collection[key].reset(new Value::element_type). Unlike
|
|
// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
|
|
// the raw pointer. Value::element_type must be default constructable.
|
|
template <class Collection>
|
|
typename Collection::mapped_type& LookupOrInsertNewSharedPtr(
|
|
Collection* const collection, const typename Collection::key_type& key) {
|
|
typedef typename Collection::mapped_type SharedPtr;
|
|
typedef typename Collection::mapped_type::element_type Element;
|
|
std::pair<typename Collection::iterator, bool> ret =
|
|
collection->insert(typename Collection::value_type(key, SharedPtr()));
|
|
if (ret.second) {
|
|
ret.first->second.reset(new Element());
|
|
}
|
|
return ret.first->second;
|
|
}
|
|
|
|
// A variant of LookupOrInsertNewSharedPtr where the value is constructed using
|
|
// a single-parameter constructor. Note: the constructor argument is computed
|
|
// even if it will not be used, so only values cheap to compute should be passed
|
|
// here. On the other hand it does not matter how expensive the construction of
|
|
// the actual stored value is, as that only occurs if necessary.
|
|
template <class Collection, class Arg>
|
|
typename Collection::mapped_type& LookupOrInsertNewSharedPtr(
|
|
Collection* const collection, const typename Collection::key_type& key, const Arg& arg) {
|
|
typedef typename Collection::mapped_type SharedPtr;
|
|
typedef typename Collection::mapped_type::element_type Element;
|
|
std::pair<typename Collection::iterator, bool> ret =
|
|
collection->insert(typename Collection::value_type(key, SharedPtr()));
|
|
if (ret.second) {
|
|
ret.first->second.reset(new Element(arg));
|
|
}
|
|
return ret.first->second;
|
|
}
|
|
|
|
//
|
|
// Misc Utility Functions
|
|
//
|
|
|
|
// Updates the value associated with the given key. If the key was not already
|
|
// present, then the key-value pair are inserted and "previous" is unchanged. If
|
|
// the key was already present, the value is updated and "*previous" will
|
|
// contain a copy of the old value.
|
|
//
|
|
// InsertOrReturnExisting has complementary behavior that returns the
|
|
// address of an already existing value, rather than updating it.
|
|
template <class Collection>
|
|
bool UpdateReturnCopy(Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& value,
|
|
typename Collection::mapped_type* previous) {
|
|
std::pair<typename Collection::iterator, bool> ret =
|
|
collection->insert(typename Collection::value_type(key, value));
|
|
if (!ret.second) {
|
|
// update
|
|
if (previous) {
|
|
*previous = ret.first->second;
|
|
}
|
|
ret.first->second = value;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Same as above except that the key and value are passed as a pair.
|
|
template <class Collection>
|
|
bool UpdateReturnCopy(Collection* const collection, const typename Collection::value_type& vt,
|
|
typename Collection::mapped_type* previous) {
|
|
std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
|
if (!ret.second) {
|
|
// update
|
|
if (previous) {
|
|
*previous = ret.first->second;
|
|
}
|
|
ret.first->second = vt.second;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Tries to insert the given key-value pair into the collection. Returns NULL if
|
|
// the insert succeeds. Otherwise, returns a pointer to the existing value.
|
|
//
|
|
// This complements UpdateReturnCopy in that it allows to update only after
|
|
// verifying the old value and still insert quickly without having to look up
|
|
// twice. Unlike UpdateReturnCopy this also does not come with the issue of an
|
|
// undefined previous* in case new data was inserted.
|
|
template <class Collection>
|
|
typename Collection::mapped_type* InsertOrReturnExisting(
|
|
Collection* const collection, const typename Collection::value_type& vt) {
|
|
std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
|
if (ret.second) {
|
|
return NULL; // Inserted, no existing previous value.
|
|
} else {
|
|
return &ret.first->second; // Return address of already existing value.
|
|
}
|
|
}
|
|
|
|
// Same as above, except for explicit key and data.
|
|
template <class Collection>
|
|
typename Collection::mapped_type* InsertOrReturnExisting(
|
|
Collection* const collection, const typename Collection::key_type& key,
|
|
const typename Collection::mapped_type& data) {
|
|
return InsertOrReturnExisting(collection, typename Collection::value_type(key, data));
|
|
}
|
|
|
|
// Saves the reverse mapping into reverse. Key/value pairs are inserted in the
|
|
// order the iterator returns them.
|
|
template <class Collection, class ReverseCollection>
|
|
void ReverseMap(const Collection& collection, ReverseCollection* const reverse) {
|
|
CHECK(reverse != NULL);
|
|
for (typename Collection::const_iterator it = collection.begin(); it != collection.end();
|
|
++it) {
|
|
InsertOrUpdate(reverse, it->second, it->first);
|
|
}
|
|
}
|
|
|
|
// Erases the collection item identified by the given key, and returns the value
|
|
// associated with that key. It is assumed that the value (i.e., the
|
|
// mapped_type) is a pointer. Returns NULL if the key was not found in the
|
|
// collection.
|
|
//
|
|
// Examples:
|
|
// map<string, MyType*> my_map;
|
|
//
|
|
// One line cleanup:
|
|
// delete EraseKeyReturnValuePtr(&my_map, "abc");
|
|
//
|
|
// Use returned value:
|
|
// gscoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc"));
|
|
// if (value_ptr.get())
|
|
// value_ptr->DoSomething();
|
|
//
|
|
// Note: if 'collection' is a multimap, this will only erase and return the
|
|
// first value.
|
|
template <class Collection>
|
|
typename Collection::mapped_type EraseKeyReturnValuePtr(Collection* const collection,
|
|
const typename Collection::key_type& key) {
|
|
auto it = collection->find(key);
|
|
if (it == collection->end()) {
|
|
return typename Collection::mapped_type();
|
|
}
|
|
typename Collection::mapped_type v = std::move(it->second);
|
|
collection->erase(it);
|
|
return v;
|
|
}
|
|
|
|
// Inserts all the keys from map_container into key_container, which must
|
|
// support insert(MapContainer::key_type).
|
|
//
|
|
// Note: any initial contents of the key_container are not cleared.
|
|
template <class MapContainer, class KeyContainer>
|
|
void InsertKeysFromMap(const MapContainer& map_container, KeyContainer* key_container) {
|
|
CHECK(key_container != NULL);
|
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
|
it != map_container.end(); ++it) {
|
|
key_container->insert(it->first);
|
|
}
|
|
}
|
|
|
|
// Appends all the keys from map_container into key_container, which must
|
|
// support push_back(MapContainer::key_type).
|
|
//
|
|
// Note: any initial contents of the key_container are not cleared.
|
|
template <class MapContainer, class KeyContainer>
|
|
void AppendKeysFromMap(const MapContainer& map_container, KeyContainer* key_container) {
|
|
CHECK(key_container != NULL);
|
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
|
it != map_container.end(); ++it) {
|
|
key_container->push_back(it->first);
|
|
}
|
|
}
|
|
|
|
// A more specialized overload of AppendKeysFromMap to optimize reallocations
|
|
// for the common case in which we're appending keys to a vector and hence can
|
|
// (and sometimes should) call reserve() first.
|
|
//
|
|
// (It would be possible to play SFINAE games to call reserve() for any
|
|
// container that supports it, but this seems to get us 99% of what we need
|
|
// without the complexity of a SFINAE-based solution.)
|
|
template <class MapContainer, class KeyType>
|
|
void AppendKeysFromMap(const MapContainer& map_container, std::vector<KeyType>* key_container) {
|
|
CHECK(key_container != NULL);
|
|
// We now have the opportunity to call reserve(). Calling reserve() every
|
|
// time is a bad idea for some use cases: libstdc++'s implementation of
|
|
// vector<>::reserve() resizes the vector's backing store to exactly the
|
|
// given size (unless it's already at least that big). Because of this,
|
|
// the use case that involves appending a lot of small maps (total size
|
|
// N) one by one to a vector would be O(N^2). But never calling reserve()
|
|
// loses the opportunity to improve the use case of adding from a large
|
|
// map to an empty vector (this improves performance by up to 33%). A
|
|
// number of heuristics are possible; see the discussion in
|
|
// cl/34081696. Here we use the simplest one.
|
|
if (key_container->empty()) {
|
|
key_container->reserve(map_container.size());
|
|
}
|
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
|
it != map_container.end(); ++it) {
|
|
key_container->push_back(it->first);
|
|
}
|
|
}
|
|
|
|
// Inserts all the values from map_container into value_container, which must
|
|
// support push_back(MapContainer::mapped_type).
|
|
//
|
|
// Note: any initial contents of the value_container are not cleared.
|
|
template <class MapContainer, class ValueContainer>
|
|
void AppendValuesFromMap(const MapContainer& map_container, ValueContainer* value_container) {
|
|
CHECK(value_container != NULL);
|
|
for (typename MapContainer::const_iterator it = map_container.begin();
|
|
it != map_container.end(); ++it) {
|
|
value_container->push_back(it->second);
|
|
}
|
|
}
|
|
|
|
template <class MapContainer, class ValueContainer>
|
|
void EmplaceValuesFromMap(MapContainer&& map_container, ValueContainer* value_container) {
|
|
CHECK(value_container != nullptr);
|
|
// See AppendKeysFromMap for why this is done.
|
|
if (value_container->empty()) {
|
|
value_container->reserve(map_container.size());
|
|
}
|
|
for (auto&& entry : map_container) {
|
|
value_container->emplace_back(std::move(entry.second));
|
|
}
|
|
}
|
|
|
|
// A more specialized overload of AppendValuesFromMap to optimize reallocations
|
|
// for the common case in which we're appending values to a vector and hence
|
|
// can (and sometimes should) call reserve() first.
|
|
//
|
|
// (It would be possible to play SFINAE games to call reserve() for any
|
|
// container that supports it, but this seems to get us 99% of what we need
|
|
// without the complexity of a SFINAE-based solution.)
|
|
template <class MapContainer, class ValueType>
|
|
void AppendValuesFromMap(const MapContainer& map_container,
|
|
std::vector<ValueType>* value_container) {
|
|
EmplaceValuesFromMap(map_container, value_container);
|
|
}
|
|
|
|
// Compute and insert new value if it's absent from the map. Return a pair with a reference to the
|
|
// value and a bool indicating whether it was absent at first.
|
|
//
|
|
// This inspired on a similar java construct (url split in two lines):
|
|
// https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html
|
|
// #computeIfAbsent-K-java.util.function.Function
|
|
//
|
|
// It takes a reference to the key and a lambda function. If the key exists in the map, returns
|
|
// a pair with a pointer to the current value and 'false'. If the key does not exist in the map,
|
|
// it uses the lambda function to create a value, inserts it into the map, and returns a pair with
|
|
// a pointer to the new value and 'true'.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// auto result = ComputeIfAbsentReturnAbsense(&my_collection,
|
|
// my_key,
|
|
// [] { return new_value; });
|
|
// MyValue* const value = result.first;
|
|
// if (result.second) ....
|
|
//
|
|
// The ComputePair* variants expect a lambda that creates a pair<k, v>. This
|
|
// can be useful if the key is a StringPiece pointing to external state to
|
|
// avoid excess memory for the keys, while being safer in multi-threaded
|
|
// contexts, e.g. in case the key goes out of scope before the container does.
|
|
//
|
|
// Example usage:
|
|
//
|
|
// map<StringPiece, int, GoodFastHash<StringPiece>> string_to_idx;
|
|
// vector<unique_ptr<StringPB>> pbs;
|
|
// auto result = ComputePairIfAbsentReturnAbsense(&string_to_idx, my_key,
|
|
// [&]() {
|
|
// unique_ptr<StringPB> s = new StringPB();
|
|
// s->set_string(my_key);
|
|
// int idx = pbs.size();
|
|
// pbs.emplace_back(s.release());
|
|
// return make_pair(StringPiece(pbs.back()->string()), idx);
|
|
// });
|
|
template <class MapContainer, typename Function>
|
|
std::pair<typename MapContainer::mapped_type* const, bool> ComputePairIfAbsentReturnAbsense(
|
|
MapContainer* container, const typename MapContainer::key_type& key,
|
|
Function compute_pair_func) {
|
|
typename MapContainer::iterator iter = container->find(key);
|
|
bool new_value = iter == container->end();
|
|
if (new_value) {
|
|
auto p = compute_pair_func();
|
|
std::pair<typename MapContainer::iterator, bool> result =
|
|
container->emplace(std::move(p.first), std::move(p.second));
|
|
DCHECK(result.second) << "duplicate key: " << key;
|
|
iter = result.first;
|
|
}
|
|
return std::make_pair(&iter->second, new_value);
|
|
}
|
|
template <class MapContainer, typename Function>
|
|
std::pair<typename MapContainer::mapped_type* const, bool> ComputeIfAbsentReturnAbsense(
|
|
MapContainer* container, const typename MapContainer::key_type& key,
|
|
Function compute_func) {
|
|
return ComputePairIfAbsentReturnAbsense(
|
|
container, key, [&key, &compute_func] { return std::make_pair(key, compute_func()); });
|
|
};
|
|
|
|
// Like the above but doesn't return a pair, just returns a pointer to the value.
|
|
// Example usage:
|
|
//
|
|
// MyValue* const value = ComputeIfAbsent(&my_collection,
|
|
// my_key,
|
|
// [] { return new_value; });
|
|
//
|
|
template <class MapContainer, typename Function>
|
|
typename MapContainer::mapped_type* ComputeIfAbsent(MapContainer* container,
|
|
const typename MapContainer::key_type& key,
|
|
Function compute_func) {
|
|
return ComputeIfAbsentReturnAbsense(container, key, compute_func).first;
|
|
};
|
|
|
|
template <class MapContainer, typename Function>
|
|
typename MapContainer::mapped_type* ComputePairIfAbsent(MapContainer* container,
|
|
const typename MapContainer::key_type& key,
|
|
Function compute_pair_func) {
|
|
return ComputePairIfAbsentReturnAbsense<MapContainer, Function>(container, key,
|
|
compute_pair_func)
|
|
.first;
|
|
};
|