Files
doris/be/src/runtime/descriptors.cpp
2019-03-19 19:33:54 +08:00

766 lines
25 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "runtime/descriptors.h"
#include <boost/algorithm/string/join.hpp>
#include <ios>
#include <sstream>
#include <llvm/ExecutionEngine/ExecutionEngine.h>
#include <llvm/IR/DataLayout.h>
#include "codegen/llvm_codegen.h"
#include "common/object_pool.h"
#include "gen_cpp/Descriptors_types.h"
#include "gen_cpp/descriptors.pb.h"
#include "gen_cpp/PlanNodes_types.h"
#include "exprs/expr.h"
namespace doris {
using boost::algorithm::join;
const int RowDescriptor::INVALID_IDX = -1;
std::string NullIndicatorOffset::debug_string() const {
std::stringstream out;
out << "(offset=" << byte_offset
<< " mask=" << std::hex << static_cast<int>(bit_mask) << std::dec << ")";
return out.str();
}
std::ostream& operator<<(std::ostream& os, const NullIndicatorOffset& null_indicator) {
os << null_indicator.debug_string();
return os;
}
SlotDescriptor::SlotDescriptor(const TSlotDescriptor& tdesc)
: _id(tdesc.id),
_type(TypeDescriptor::from_thrift(tdesc.slotType)),
_parent(tdesc.parent),
_col_pos(tdesc.columnPos),
_tuple_offset(tdesc.byteOffset),
_null_indicator_offset(tdesc.nullIndicatorByte, tdesc.nullIndicatorBit),
_col_name(tdesc.colName),
_slot_idx(tdesc.slotIdx),
_slot_size(_type.get_slot_size()),
_field_idx(-1),
_is_materialized(tdesc.isMaterialized),
_is_null_fn(NULL),
_set_not_null_fn(NULL),
_set_null_fn(NULL) {
}
SlotDescriptor::SlotDescriptor(const PSlotDescriptor& pdesc)
: _id(pdesc.id()),
_type(TypeDescriptor::from_protobuf(pdesc.slot_type())),
_parent(pdesc.parent()),
_col_pos(pdesc.column_pos()),
_tuple_offset(pdesc.byte_offset()),
_null_indicator_offset(pdesc.null_indicator_byte(), pdesc.null_indicator_bit()),
_col_name(pdesc.col_name()),
_slot_idx(pdesc.slot_idx()),
_slot_size(_type.get_slot_size()),
_field_idx(-1),
_is_materialized(pdesc.is_materialized()),
_is_null_fn(NULL),
_set_not_null_fn(NULL),
_set_null_fn(NULL) {
}
void SlotDescriptor::to_protobuf(PSlotDescriptor* pslot) const {
pslot->set_id(_id);
pslot->set_parent(_parent);
_type.to_protobuf(pslot->mutable_slot_type());
pslot->set_column_pos(_col_pos);
pslot->set_byte_offset(_tuple_offset);
pslot->set_null_indicator_byte(_null_indicator_offset.byte_offset);
pslot->set_null_indicator_bit(_null_indicator_offset.bit_offset);
pslot->set_col_name(_col_name);
pslot->set_slot_idx(_slot_idx);
pslot->set_is_materialized(_is_materialized);
}
std::string SlotDescriptor::debug_string() const {
std::stringstream out;
out << "Slot(id=" << _id << " type=" << _type
<< " col=" << _col_pos << " offset=" << _tuple_offset
<< " null=" << _null_indicator_offset.debug_string() << ")";
return out.str();
}
TableDescriptor::TableDescriptor(const TTableDescriptor& tdesc)
: _name(tdesc.tableName),
_database(tdesc.dbName),
_id(tdesc.id),
_num_cols(tdesc.numCols),
_num_clustering_cols(tdesc.numClusteringCols) {
}
std::string TableDescriptor::debug_string() const {
std::stringstream out;
out << "#cols=" << _num_cols << " #clustering_cols=" << _num_clustering_cols;
return out.str();
}
OlapTableDescriptor::OlapTableDescriptor(const TTableDescriptor& tdesc)
: TableDescriptor(tdesc) {
}
std::string OlapTableDescriptor::debug_string() const {
std::stringstream out;
out << "OlapTable(" << TableDescriptor::debug_string() << ")";
return out.str();
}
SchemaTableDescriptor::SchemaTableDescriptor(const TTableDescriptor& tdesc)
: TableDescriptor(tdesc),
_schema_table_type(tdesc.schemaTable.tableType) {
}
SchemaTableDescriptor::~SchemaTableDescriptor() {
}
std::string SchemaTableDescriptor::debug_string() const {
std::stringstream out;
out << "SchemaTable(" << TableDescriptor::debug_string() << ")";
return out.str();
}
BrokerTableDescriptor::BrokerTableDescriptor(const TTableDescriptor& tdesc)
: TableDescriptor(tdesc) {
}
BrokerTableDescriptor::~BrokerTableDescriptor() {
}
std::string BrokerTableDescriptor::debug_string() const {
std::stringstream out;
out << "BrokerTable(" << TableDescriptor::debug_string() << ")";
return out.str();
}
EsTableDescriptor::EsTableDescriptor(const TTableDescriptor& tdesc)
: TableDescriptor(tdesc) {
}
EsTableDescriptor::~EsTableDescriptor() {
}
std::string EsTableDescriptor::debug_string() const {
std::stringstream out;
out << "EsTable(" << TableDescriptor::debug_string() << ")";
return out.str();
}
KuduTableDescriptor::KuduTableDescriptor(const TTableDescriptor& tdesc)
: TableDescriptor(tdesc),
table_name_(tdesc.kuduTable.table_name),
key_columns_(tdesc.kuduTable.key_columns),
master_addresses_(tdesc.kuduTable.master_addresses) {
}
std::string KuduTableDescriptor::DebugString() const {
std::stringstream out;
out << "KuduTable(" << TableDescriptor::debug_string() << " table=" << table_name_;
out << " master_addrs=[" << boost::join(master_addresses_, ",") << "]";
out << " key_columns=[";
out << join(key_columns_, ":");
out << "])";
return out.str();
}
MySQLTableDescriptor::MySQLTableDescriptor(const TTableDescriptor& tdesc)
: TableDescriptor(tdesc),
_mysql_db(tdesc.mysqlTable.db),
_mysql_table(tdesc.mysqlTable.table),
_host(tdesc.mysqlTable.host),
_port(tdesc.mysqlTable.port),
_user(tdesc.mysqlTable.user),
_passwd(tdesc.mysqlTable.passwd) {
}
std::string MySQLTableDescriptor::debug_string() const {
std::stringstream out;
out << "MySQLTable(" << TableDescriptor::debug_string() << " _db" << _mysql_db << " table=" <<
_mysql_table
<< " host=" << _host << " port=" << _port << " user=" << _user << " passwd=" << _passwd;
return out.str();
}
TupleDescriptor::TupleDescriptor(const TTupleDescriptor& tdesc) :
_id(tdesc.id),
_table_desc(NULL),
_byte_size(tdesc.byteSize),
_num_null_bytes(tdesc.numNullBytes),
_num_materialized_slots(0),
_slots(),
_has_varlen_slots(false),
_llvm_struct(NULL) {
if (false == tdesc.__isset.numNullSlots) {
//be compatible for existing tables with no NULL value
_num_null_slots = 0;
} else {
_num_null_slots = tdesc.numNullSlots;
}
}
TupleDescriptor::TupleDescriptor(const PTupleDescriptor& pdesc)
: _id(pdesc.id()),
_table_desc(NULL),
_byte_size(pdesc.byte_size()),
_num_null_bytes(pdesc.num_null_bytes()),
_num_materialized_slots(0),
_slots(),
_has_varlen_slots(false),
_llvm_struct(NULL) {
if (!pdesc.has_num_null_slots()) {
//be compatible for existing tables with no NULL value
_num_null_slots = 0;
} else {
_num_null_slots = pdesc.num_null_slots();
}
}
void TupleDescriptor::add_slot(SlotDescriptor* slot) {
_slots.push_back(slot);
if (slot->is_materialized()) {
++_num_materialized_slots;
if (slot->type().is_string_type()) {
_string_slots.push_back(slot);
_has_varlen_slots = true;
} else {
_no_string_slots.push_back(slot);
}
}
}
std::vector<SlotDescriptor*> TupleDescriptor::slots_ordered_by_idx() const {
std::vector<SlotDescriptor*> sorted_slots(slots().size());
for (SlotDescriptor* slot: slots()) {
sorted_slots[slot->_slot_idx] = slot;
}
return sorted_slots;
}
bool TupleDescriptor::layout_equals(const TupleDescriptor& other_desc) const {
if (byte_size() != other_desc.byte_size()) return false;
if (slots().size() != other_desc.slots().size()) return false;
std::vector<SlotDescriptor*> slots = slots_ordered_by_idx();
std::vector<SlotDescriptor*> other_slots = other_desc.slots_ordered_by_idx();
for (int i = 0; i < slots.size(); ++i) {
if (!slots[i]->layout_equals(*other_slots[i])) return false;
}
return true;
}
void TupleDescriptor::to_protobuf(PTupleDescriptor* ptuple) const {
ptuple->Clear();
ptuple->set_id(_id);
ptuple->set_byte_size(_byte_size);
ptuple->set_num_null_bytes(_num_null_bytes);
ptuple->set_table_id(-1);
ptuple->set_num_null_slots(_num_null_slots);
}
std::string TupleDescriptor::debug_string() const {
std::stringstream out;
out << "Tuple(id=" << _id << " size=" << _byte_size;
if (_table_desc != NULL) {
//out << " " << _table_desc->debug_string();
}
out << " slots=[";
for (size_t i = 0; i < _slots.size(); ++i) {
if (i > 0) {
out << ", ";
}
out << _slots[i]->debug_string();
}
out << "]";
out << " has_varlen_slots=" << _has_varlen_slots;
out << ")";
return out.str();
}
RowDescriptor::RowDescriptor(
const DescriptorTbl& desc_tbl,
const std::vector<TTupleId>& row_tuples,
const std::vector<bool>& nullable_tuples) :
_tuple_idx_nullable_map(nullable_tuples) {
DCHECK(nullable_tuples.size() == row_tuples.size());
DCHECK_GT(row_tuples.size(), 0);
_num_null_slots = 0;
for (int i = 0; i < row_tuples.size(); ++i) {
TupleDescriptor* tupleDesc = desc_tbl.get_tuple_descriptor(row_tuples[i]);
_num_null_slots += tupleDesc->num_null_slots();
_tuple_desc_map.push_back(tupleDesc);
DCHECK(_tuple_desc_map.back() != NULL);
}
_num_null_bytes = (_num_null_slots + 7) / 8;
init_tuple_idx_map();
init_has_varlen_slots();
}
RowDescriptor::RowDescriptor(TupleDescriptor* tuple_desc, bool is_nullable) :
_tuple_desc_map(1, tuple_desc),
_tuple_idx_nullable_map(1, is_nullable) {
init_tuple_idx_map();
init_has_varlen_slots();
}
void RowDescriptor::init_tuple_idx_map() {
// find max id
TupleId max_id = 0;
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
max_id = std::max(_tuple_desc_map[i]->id(), max_id);
}
_tuple_idx_map.resize(max_id + 1, INVALID_IDX);
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
_tuple_idx_map[_tuple_desc_map[i]->id()] = i;
}
}
void RowDescriptor::init_has_varlen_slots() {
_has_varlen_slots = false;
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
if (_tuple_desc_map[i]->has_varlen_slots()) {
_has_varlen_slots = true;
break;
}
}
}
int RowDescriptor::get_row_size() const {
int size = 0;
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
size += _tuple_desc_map[i]->byte_size();
}
return size;
}
int RowDescriptor::get_tuple_idx(TupleId id) const {
DCHECK_LT(id, _tuple_idx_map.size()) << "RowDescriptor: " << debug_string();
return _tuple_idx_map[id];
}
bool RowDescriptor::tuple_is_nullable(int tuple_idx) const {
DCHECK_LT(tuple_idx, _tuple_idx_nullable_map.size()) << "RowDescriptor: " << debug_string();
return _tuple_idx_nullable_map[tuple_idx];
}
bool RowDescriptor::is_any_tuple_nullable() const {
for (int i = 0; i < _tuple_idx_nullable_map.size(); ++i) {
if (_tuple_idx_nullable_map[i]) {
return true;
}
}
return false;
}
void RowDescriptor::to_thrift(std::vector<TTupleId>* row_tuple_ids) {
row_tuple_ids->clear();
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
row_tuple_ids->push_back(_tuple_desc_map[i]->id());
}
}
void RowDescriptor::to_protobuf(
google::protobuf::RepeatedField<google::protobuf::int32 >* row_tuple_ids) {
row_tuple_ids->Clear();
for (auto desc : _tuple_desc_map) {
row_tuple_ids->Add(desc->id());
}
}
bool RowDescriptor::is_prefix_of(const RowDescriptor& other_desc) const {
if (_tuple_desc_map.size() > other_desc._tuple_desc_map.size()) {
return false;
}
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
// pointer comparison okay, descriptors are unique
if (_tuple_desc_map[i] != other_desc._tuple_desc_map[i]) {
return false;
}
}
return true;
}
bool RowDescriptor::equals(const RowDescriptor& other_desc) const {
if (_tuple_desc_map.size() != other_desc._tuple_desc_map.size()) {
return false;
}
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
// pointer comparison okay, descriptors are unique
if (_tuple_desc_map[i] != other_desc._tuple_desc_map[i]) {
return false;
}
}
return true;
}
bool RowDescriptor::layout_is_prefix_of(const RowDescriptor& other_desc) const {
if (_tuple_desc_map.size() > other_desc._tuple_desc_map.size()) return false;
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
if (!_tuple_desc_map[i]->layout_equals(*other_desc._tuple_desc_map[i])) return false;
}
return true;
}
bool RowDescriptor::layout_equals(const RowDescriptor& other_desc) const {
if (_tuple_desc_map.size() != other_desc._tuple_desc_map.size()) return false;
return layout_is_prefix_of(other_desc);
}
std::string RowDescriptor::debug_string() const {
std::stringstream ss;
ss << "tuple_desc_map: [";
for (int i = 0; i < _tuple_desc_map.size(); ++i) {
ss << _tuple_desc_map[i]->debug_string();
if (i != _tuple_desc_map.size() -1) {
ss << ", ";
}
}
ss << "] ";
ss << "tuple_id_map: [";
for (int i = 0; i < _tuple_idx_map.size(); ++i) {
ss << _tuple_idx_map[i];
if (i != _tuple_idx_map.size() -1) {
ss << ", ";
}
}
ss << "] ";
ss << "tuple_is_nullable: [";
for (int i = 0; i < _tuple_idx_nullable_map.size(); ++i) {
ss << _tuple_idx_nullable_map[i];
if (i != _tuple_idx_nullable_map.size() -1) {
ss << ", ";
}
}
ss << "] ";
return ss.str();
}
Status DescriptorTbl::create(ObjectPool* pool, const TDescriptorTable& thrift_tbl,
DescriptorTbl** tbl) {
*tbl = pool->add(new DescriptorTbl());
// deserialize table descriptors first, they are being referenced by tuple descriptors
for (size_t i = 0; i < thrift_tbl.tableDescriptors.size(); ++i) {
const TTableDescriptor& tdesc = thrift_tbl.tableDescriptors[i];
TableDescriptor* desc = NULL;
switch (tdesc.tableType) {
case TTableType::MYSQL_TABLE:
desc = pool->add(new MySQLTableDescriptor(tdesc));
break;
case TTableType::OLAP_TABLE:
desc = pool->add(new OlapTableDescriptor(tdesc));
break;
case TTableType::SCHEMA_TABLE:
desc = pool->add(new SchemaTableDescriptor(tdesc));
break;
case TTableType::BROKER_TABLE:
desc = pool->add(new BrokerTableDescriptor(tdesc));
break;
case TTableType::ES_TABLE:
desc = pool->add(new EsTableDescriptor(tdesc));
break;
default:
DCHECK(false) << "invalid table type: " << tdesc.tableType;
}
(*tbl)->_tbl_desc_map[tdesc.id] = desc;
}
for (size_t i = 0; i < thrift_tbl.tupleDescriptors.size(); ++i) {
const TTupleDescriptor& tdesc = thrift_tbl.tupleDescriptors[i];
TupleDescriptor* desc = pool->add(new TupleDescriptor(tdesc));
// fix up table pointer
if (tdesc.__isset.tableId) {
desc->_table_desc = (*tbl)->get_table_descriptor(tdesc.tableId);
DCHECK(desc->_table_desc != NULL);
}
(*tbl)->_tuple_desc_map[tdesc.id] = desc;
}
for (size_t i = 0; i < thrift_tbl.slotDescriptors.size(); ++i) {
const TSlotDescriptor& tdesc = thrift_tbl.slotDescriptors[i];
SlotDescriptor* slot_d = pool->add(new SlotDescriptor(tdesc));
(*tbl)->_slot_desc_map[tdesc.id] = slot_d;
// link to parent
TupleDescriptorMap::iterator entry = (*tbl)->_tuple_desc_map.find(tdesc.parent);
if (entry == (*tbl)->_tuple_desc_map.end()) {
return Status("unknown tid in slot descriptor msg");
}
entry->second->add_slot(slot_d);
}
return Status::OK;
}
TableDescriptor* DescriptorTbl::get_table_descriptor(TableId id) const {
// TODO: is there some boost function to do exactly this?
TableDescriptorMap::const_iterator i = _tbl_desc_map.find(id);
if (i == _tbl_desc_map.end()) {
return NULL;
} else {
return i->second;
}
}
TupleDescriptor* DescriptorTbl::get_tuple_descriptor(TupleId id) const {
// TODO: is there some boost function to do exactly this?
TupleDescriptorMap::const_iterator i = _tuple_desc_map.find(id);
if (i == _tuple_desc_map.end()) {
return NULL;
} else {
return i->second;
}
}
SlotDescriptor* DescriptorTbl::get_slot_descriptor(SlotId id) const {
// TODO: is there some boost function to do exactly this?
SlotDescriptorMap::const_iterator i = _slot_desc_map.find(id);
if (i == _slot_desc_map.end()) {
return NULL;
} else {
return i->second;
}
}
// return all registered tuple descriptors
void DescriptorTbl::get_tuple_descs(std::vector<TupleDescriptor*>* descs) const {
descs->clear();
for (TupleDescriptorMap::const_iterator i = _tuple_desc_map.begin();
i != _tuple_desc_map.end(); ++i) {
descs->push_back(i->second);
}
}
bool SlotDescriptor::layout_equals(const SlotDescriptor& other_desc) const {
if (type().type != other_desc.type().type) return false;
if (is_nullable() != other_desc.is_nullable()) return false;
if (slot_size() != other_desc.slot_size()) return false;
if (tuple_offset() != other_desc.tuple_offset()) return false;
if (!null_indicator_offset().equals(other_desc.null_indicator_offset())) return false;
return true;
}
// Generate function to check if a slot is null. The resulting IR looks like:
// (in this case the tuple contains only a nullable double)
// define i1 @IsNull({ i8, double }* %tuple) {
// entry:
// %null_byte_ptr = getelementptr inbounds { i8, double }* %tuple, i32 0, i32 0
// %null_byte = load i8* %null_byte_ptr
// %null_mask = and i8 %null_byte, 1
// %is_null = icmp ne i8 %null_mask, 0
// ret i1 %is_null
// }
llvm::Function* SlotDescriptor::codegen_is_null(LlvmCodeGen* codegen, llvm::StructType* tuple) {
if (_is_null_fn != NULL) {
return _is_null_fn;
}
llvm::PointerType* tuple_ptr_type = llvm::PointerType::get(tuple, 0);
LlvmCodeGen::FnPrototype prototype(codegen, "IsNull", codegen->get_type(TYPE_BOOLEAN));
prototype.add_argument(LlvmCodeGen::NamedVariable("tuple", tuple_ptr_type));
llvm::Value* mask = codegen->get_int_constant(TYPE_TINYINT, _null_indicator_offset.bit_mask);
llvm::Value* zero = codegen->get_int_constant(TYPE_TINYINT, 0);
int byte_offset = _null_indicator_offset.byte_offset;
LlvmCodeGen::LlvmBuilder builder(codegen->context());
llvm::Value* tuple_ptr = NULL;
llvm::Function* fn = prototype.generate_prototype(&builder, &tuple_ptr);
llvm::Value* null_byte_ptr = builder.CreateStructGEP(tuple_ptr, byte_offset, "null_byte_ptr");
llvm::Value* null_byte = builder.CreateLoad(null_byte_ptr, "null_byte");
llvm::Value* null_mask = builder.CreateAnd(null_byte, mask, "null_mask");
llvm::Value* is_null = builder.CreateICmpNE(null_mask, zero, "is_null");
builder.CreateRet(is_null);
return _is_null_fn = codegen->finalize_function(fn);
}
// Generate function to set a slot to be null or not-null. The resulting IR
// for SetNotNull looks like:
// (in this case the tuple contains only a nullable double)
// define void @SetNotNull({ i8, double }* %tuple) {
// entry:
// %null_byte_ptr = getelementptr inbounds { i8, double }* %tuple, i32 0, i32 0
// %null_byte = load i8* %null_byte_ptr
// %0 = and i8 %null_byte, -2
// store i8 %0, i8* %null_byte_ptr
// ret void
// }
llvm::Function* SlotDescriptor::codegen_update_null(LlvmCodeGen* codegen,
llvm::StructType* tuple, bool set_null) {
if (set_null && _set_null_fn != NULL) {
return _set_null_fn;
}
if (!set_null && _set_not_null_fn != NULL) {
return _set_not_null_fn;
}
llvm::PointerType* tuple_ptr_type = llvm::PointerType::get(tuple, 0);
LlvmCodeGen::FnPrototype prototype(codegen, (set_null) ? "SetNull" : "SetNotNull",
codegen->void_type());
prototype.add_argument(LlvmCodeGen::NamedVariable("tuple", tuple_ptr_type));
LlvmCodeGen::LlvmBuilder builder(codegen->context());
llvm::Value* tuple_ptr = NULL;
llvm::Function* fn = prototype.generate_prototype(&builder, &tuple_ptr);
llvm::Value* null_byte_ptr =
builder.CreateStructGEP(
tuple_ptr, _null_indicator_offset.byte_offset, "null_byte_ptr");
llvm::Value* null_byte = builder.CreateLoad(null_byte_ptr, "null_byte");
llvm::Value* result = NULL;
if (set_null) {
llvm::Value* null_set = codegen->get_int_constant(
TYPE_TINYINT, _null_indicator_offset.bit_mask);
result = builder.CreateOr(null_byte, null_set);
} else {
llvm::Value* null_clear_val =
codegen->get_int_constant(TYPE_TINYINT, ~_null_indicator_offset.bit_mask);
result = builder.CreateAnd(null_byte, null_clear_val);
}
builder.CreateStore(result, null_byte_ptr);
builder.CreateRetVoid();
fn = codegen->finalize_function(fn);
if (set_null) {
_set_null_fn = fn;
} else {
_set_not_null_fn = fn;
}
return fn;
}
// The default llvm packing is identical to what we do in the FE. Each field is aligned
// to begin on the size for that type.
// TODO: Understand llvm::SetTargetData which allows you to explicitly define the packing
// rules.
llvm::StructType* TupleDescriptor::generate_llvm_struct(LlvmCodeGen* codegen) {
// If we already generated the llvm type, just return it.
if (_llvm_struct != NULL) {
return _llvm_struct;
}
// For each null byte, add a byte to the struct
std::vector<llvm::Type*> struct_fields;
struct_fields.resize(_num_null_bytes + _num_materialized_slots);
for (int i = 0; i < _num_null_bytes; ++i) {
struct_fields[i] = codegen->get_type(TYPE_TINYINT);
}
// Add the slot types to the struct description.
for (int i = 0; i < slots().size(); ++i) {
SlotDescriptor* slot_desc = slots()[i];
if (slot_desc->is_materialized()) {
slot_desc->_field_idx = slot_desc->_slot_idx + _num_null_bytes;
DCHECK_LT(slot_desc->field_idx(), struct_fields.size());
struct_fields[slot_desc->field_idx()] = codegen->get_type(slot_desc->type().type);
}
}
// Construct the struct type.
llvm::StructType* tuple_struct = llvm::StructType::get(
codegen->context(), llvm::ArrayRef<llvm::Type*>(struct_fields));
// Verify the alignment is correct. It is essential that the layout matches
// identically. If the layout does not match, return NULL indicating the
// struct could not be codegen'd. This will trigger codegen for anything using
// the tuple to be disabled.
const llvm::DataLayout* data_layout = codegen->execution_engine()->getDataLayout();
const llvm::StructLayout* layout = data_layout->getStructLayout(tuple_struct);
layout = data_layout->getStructLayout(tuple_struct);
if (layout->getSizeInBytes() != byte_size()) {
DCHECK_EQ(layout->getSizeInBytes(), byte_size());
return NULL;
}
for (int i = 0; i < slots().size(); ++i) {
SlotDescriptor* slot_desc = slots()[i];
if (slot_desc->is_materialized()) {
int field_idx = slot_desc->field_idx();
// Verify that the byte offset in the llvm struct matches the tuple offset
// computed in the FE
if (layout->getElementOffset(field_idx) != slot_desc->tuple_offset()) {
DCHECK_EQ(layout->getElementOffset(field_idx), slot_desc->tuple_offset());
return NULL;
}
}
}
_llvm_struct = tuple_struct;
return tuple_struct;
}
std::string DescriptorTbl::debug_string() const {
std::stringstream out;
out << "tuples:\n";
for (TupleDescriptorMap::const_iterator i = _tuple_desc_map.begin();
i != _tuple_desc_map.end(); ++i) {
out << i->second->debug_string() << '\n';
}
return out.str();
}
}