Fix error when reading empty map values in parquet. The `offsets.back()` doesn't not equal the number of elements in map's key column.
### How does this happen
Map in parquet is stored as repeated group, and `repeated_parent_def_level` is set incorrectly when parsing map node in parquet schema.
```
the map definition in parquet:
optional group <name> (MAP) {
repeated group map (MAP_KEY_VALUE) {
required <type> key;
optional <type> value;
}
}
```
### How to fix
Set the `repeated_parent_def_level` of key/value node as the definition level of map node.
`repeated_parent_def_level` is the definition level of the first ancestor node whose `repetition_type` equals `REPEATED`. Empty array/map values are not stored in doris column, so have to use `repeated_parent_def_level` to skip the empty or null values in ancestor node.
For instance, considering an array of strings with 3 rows like the following:
`null, [], [a, b, c]`
We can store four elements in data column: `null, a, b, c`
and the offsets column is: `1, 1, 4`
and the null map is: `1, 0, 0`
For the `i-th` row in array column: range from `offsets[i - 1]` until `offsets[i]` represents the elements in this row, so we can't store empty array/map values in doris data column. As a comparison, spark does not require `repeated_parent_def_level`, because the spark column stores empty array/map values , and use anther length column to indicate empty values. Please reference: https://github.com/apache/spark/blob/master/sql/core/src/main/java/org/apache/spark/sql/execution/datasources/parquet/ParquetColumnVector.java
Furthermore, we can also avoid store null array/map values in doris data column. The same three rows as above, We can only store three elements in data column: `a, b, c`
and the offsets column is: `0, 0, 3`
and the null map is: `1, 0, 0`