414 lines
16 KiB
C++
414 lines
16 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "scanner_context.h"
|
|
|
|
#include <bthread/bthread.h>
|
|
#include <fmt/format.h>
|
|
#include <gen_cpp/Metrics_types.h>
|
|
#include <glog/logging.h>
|
|
|
|
#include <algorithm>
|
|
#include <mutex>
|
|
#include <ostream>
|
|
#include <utility>
|
|
|
|
#include "common/config.h"
|
|
#include "common/status.h"
|
|
#include "runtime/descriptors.h"
|
|
#include "runtime/exec_env.h"
|
|
#include "runtime/query_context.h"
|
|
#include "runtime/runtime_state.h"
|
|
#include "util/pretty_printer.h"
|
|
#include "util/uid_util.h"
|
|
#include "vec/core/block.h"
|
|
#include "vec/exec/scan/scanner_scheduler.h"
|
|
#include "vec/exec/scan/vscan_node.h"
|
|
#include "vec/exec/scan/vscanner.h"
|
|
|
|
namespace doris::vectorized {
|
|
|
|
ScannerContext::ScannerContext(doris::RuntimeState* state_, doris::vectorized::VScanNode* parent,
|
|
const doris::TupleDescriptor* input_tuple_desc,
|
|
const doris::TupleDescriptor* output_tuple_desc,
|
|
const std::list<VScannerSPtr>& scanners_, int64_t limit_,
|
|
int64_t max_bytes_in_blocks_queue_, const int num_parallel_instances)
|
|
: _state(state_),
|
|
_parent(parent),
|
|
_input_tuple_desc(input_tuple_desc),
|
|
_output_tuple_desc(output_tuple_desc),
|
|
_process_status(Status::OK()),
|
|
_batch_size(state_->batch_size()),
|
|
limit(limit_),
|
|
_max_bytes_in_queue(max_bytes_in_blocks_queue_),
|
|
_scanner_scheduler(state_->exec_env()->scanner_scheduler()),
|
|
_scanners(scanners_),
|
|
_num_parallel_instances(num_parallel_instances) {
|
|
ctx_id = UniqueId::gen_uid().to_string();
|
|
if (_scanners.empty()) {
|
|
_is_finished = true;
|
|
}
|
|
}
|
|
|
|
// After init function call, should not access _parent
|
|
Status ScannerContext::init() {
|
|
_real_tuple_desc = _input_tuple_desc != nullptr ? _input_tuple_desc : _output_tuple_desc;
|
|
// 1. Calculate max concurrency
|
|
// TODO: now the max thread num <= config::doris_scanner_thread_pool_thread_num / 4
|
|
// should find a more reasonable value.
|
|
_max_thread_num = config::doris_scanner_thread_pool_thread_num / 4;
|
|
if (_parent->_shared_scan_opt) {
|
|
DCHECK(_num_parallel_instances > 0);
|
|
_max_thread_num *= _num_parallel_instances;
|
|
}
|
|
_max_thread_num = _max_thread_num == 0 ? 1 : _max_thread_num;
|
|
DCHECK(_max_thread_num > 0);
|
|
_max_thread_num = std::min(_max_thread_num, (int32_t)_scanners.size());
|
|
// For select * from table limit 10; should just use one thread.
|
|
if (_parent->should_run_serial()) {
|
|
_max_thread_num = 1;
|
|
}
|
|
|
|
_scanner_profile = _parent->_scanner_profile;
|
|
_scanner_sched_counter = _parent->_scanner_sched_counter;
|
|
_scanner_ctx_sched_counter = _parent->_scanner_ctx_sched_counter;
|
|
_scanner_ctx_sched_time = _parent->_scanner_ctx_sched_time;
|
|
_free_blocks_memory_usage = _parent->_free_blocks_memory_usage;
|
|
_newly_create_free_blocks_num = _parent->_newly_create_free_blocks_num;
|
|
_queued_blocks_memory_usage = _parent->_queued_blocks_memory_usage;
|
|
_scanner_wait_batch_timer = _parent->_scanner_wait_batch_timer;
|
|
// 2. Calculate the number of free blocks that all scanners can use.
|
|
// The calculation logic is as follows:
|
|
// 1. Assuming that at most M rows can be scanned in one scan(config::doris_scanner_row_num),
|
|
// then figure out how many blocks are required for one scan(_block_per_scanner).
|
|
// 2. The maximum number of concurrency * the blocks required for one scan,
|
|
// that is, the number of blocks that all scanners can use.
|
|
auto doris_scanner_row_num =
|
|
limit == -1 ? config::doris_scanner_row_num
|
|
: std::min(static_cast<int64_t>(config::doris_scanner_row_num), limit);
|
|
int real_block_size =
|
|
limit == -1 ? _batch_size : std::min(static_cast<int64_t>(_batch_size), limit);
|
|
_block_per_scanner = (doris_scanner_row_num + (real_block_size - 1)) / real_block_size;
|
|
_free_blocks_capacity = _max_thread_num * _block_per_scanner;
|
|
auto pre_alloc_block_count = _max_thread_num * _block_per_scanner;
|
|
|
|
_init_free_block(pre_alloc_block_count, real_block_size);
|
|
|
|
#ifndef BE_TEST
|
|
// 3. get thread token
|
|
thread_token = _state->get_query_ctx()->get_token();
|
|
#endif
|
|
|
|
// 4. This ctx will be submitted to the scanner scheduler right after init.
|
|
// So set _num_scheduling_ctx to 1 here.
|
|
_num_scheduling_ctx = 1;
|
|
|
|
_num_unfinished_scanners = _scanners.size();
|
|
|
|
COUNTER_SET(_parent->_max_scanner_thread_num, (int64_t)_max_thread_num);
|
|
_parent->_runtime_profile->add_info_string("UseSpecificThreadToken",
|
|
thread_token == nullptr ? "False" : "True");
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
void ScannerContext::_init_free_block(int pre_alloc_block_count, int real_block_size) {
|
|
// The free blocks is used for final output block of scanners.
|
|
// So use _output_tuple_desc;
|
|
int64_t free_blocks_memory_usage = 0;
|
|
for (int i = 0; i < pre_alloc_block_count; ++i) {
|
|
auto block = vectorized::Block::create_unique(_output_tuple_desc->slots(), real_block_size,
|
|
true /*ignore invalid slots*/);
|
|
free_blocks_memory_usage += block->allocated_bytes();
|
|
_free_blocks.enqueue(std::move(block));
|
|
}
|
|
_free_blocks_memory_usage->add(free_blocks_memory_usage);
|
|
}
|
|
|
|
vectorized::BlockUPtr ScannerContext::get_free_block(bool* has_free_block,
|
|
bool get_block_not_empty) {
|
|
vectorized::BlockUPtr block;
|
|
if (_free_blocks.try_dequeue(block)) {
|
|
if (!get_block_not_empty || block->mem_reuse()) {
|
|
_free_blocks_capacity--;
|
|
_free_blocks_memory_usage->add(-block->allocated_bytes());
|
|
return block;
|
|
}
|
|
}
|
|
|
|
COUNTER_UPDATE(_newly_create_free_blocks_num, 1);
|
|
return vectorized::Block::create_unique(_real_tuple_desc->slots(), _batch_size,
|
|
true /*ignore invalid slots*/);
|
|
}
|
|
|
|
void ScannerContext::return_free_block(std::unique_ptr<vectorized::Block> block) {
|
|
block->clear_column_data();
|
|
_free_blocks_memory_usage->add(block->allocated_bytes());
|
|
_free_blocks.enqueue(std::move(block));
|
|
++_free_blocks_capacity;
|
|
}
|
|
|
|
void ScannerContext::append_blocks_to_queue(std::vector<vectorized::BlockUPtr>& blocks) {
|
|
std::lock_guard l(_transfer_lock);
|
|
auto old_bytes_in_queue = _cur_bytes_in_queue;
|
|
for (auto& b : blocks) {
|
|
_cur_bytes_in_queue += b->allocated_bytes();
|
|
_blocks_queue.push_back(std::move(b));
|
|
}
|
|
blocks.clear();
|
|
_blocks_queue_added_cv.notify_one();
|
|
_queued_blocks_memory_usage->add(_cur_bytes_in_queue - old_bytes_in_queue);
|
|
}
|
|
|
|
bool ScannerContext::empty_in_queue(int id) {
|
|
std::unique_lock l(_transfer_lock);
|
|
return _blocks_queue.empty();
|
|
}
|
|
|
|
Status ScannerContext::get_block_from_queue(RuntimeState* state, vectorized::BlockUPtr* block,
|
|
bool* eos, int id, bool wait) {
|
|
std::unique_lock l(_transfer_lock);
|
|
// Normally, the scanner scheduler will schedule ctx.
|
|
// But when the amount of data in the blocks queue exceeds the upper limit,
|
|
// the scheduler will stop scheduling.
|
|
// (if the scheduler continues to schedule, it will cause a lot of busy running).
|
|
// At this point, consumers are required to trigger new scheduling to ensure that
|
|
// data can be continuously fetched.
|
|
if (has_enough_space_in_blocks_queue() && _num_running_scanners == 0) {
|
|
auto state = _scanner_scheduler->submit(this);
|
|
if (state.ok()) {
|
|
_num_scheduling_ctx++;
|
|
} else {
|
|
set_status_on_error(state, false);
|
|
}
|
|
}
|
|
// Wait for block from queue
|
|
if (wait) {
|
|
SCOPED_TIMER(_scanner_wait_batch_timer);
|
|
while (!(!_blocks_queue.empty() || _is_finished || !status().ok() ||
|
|
state->is_cancelled())) {
|
|
_blocks_queue_added_cv.wait(l);
|
|
}
|
|
}
|
|
|
|
if (state->is_cancelled()) {
|
|
set_status_on_error(Status::Cancelled("cancelled"), false);
|
|
}
|
|
|
|
if (!status().ok()) {
|
|
return status();
|
|
}
|
|
|
|
if (!_blocks_queue.empty()) {
|
|
*block = std::move(_blocks_queue.front());
|
|
_blocks_queue.pop_front();
|
|
auto block_bytes = (*block)->allocated_bytes();
|
|
_cur_bytes_in_queue -= block_bytes;
|
|
_queued_blocks_memory_usage->add(-block_bytes);
|
|
return Status::OK();
|
|
} else {
|
|
*eos = _is_finished;
|
|
}
|
|
return Status::OK();
|
|
}
|
|
|
|
bool ScannerContext::set_status_on_error(const Status& status, bool need_lock) {
|
|
std::unique_lock l(_transfer_lock, std::defer_lock);
|
|
if (need_lock) {
|
|
l.lock();
|
|
}
|
|
if (this->status().ok()) {
|
|
_process_status = status;
|
|
_status_error = true;
|
|
_blocks_queue_added_cv.notify_one();
|
|
_should_stop = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Status ScannerContext::_close_and_clear_scanners(VScanNode* node, RuntimeState* state) {
|
|
std::unique_lock l(_scanners_lock);
|
|
if (state->enable_profile()) {
|
|
std::stringstream scanner_statistics;
|
|
std::stringstream scanner_rows_read;
|
|
std::stringstream scanner_wait_worker_time;
|
|
scanner_statistics << "[";
|
|
scanner_rows_read << "[";
|
|
scanner_wait_worker_time << "[";
|
|
for (auto finished_scanner_time : _finished_scanner_runtime) {
|
|
scanner_statistics << PrettyPrinter::print(finished_scanner_time, TUnit::TIME_NS)
|
|
<< ", ";
|
|
}
|
|
for (auto finished_scanner_rows : _finished_scanner_rows_read) {
|
|
scanner_rows_read << PrettyPrinter::print(finished_scanner_rows, TUnit::UNIT) << ", ";
|
|
}
|
|
for (auto finished_scanner_wait_time : _finished_scanner_wait_worker_time) {
|
|
scanner_wait_worker_time
|
|
<< PrettyPrinter::print(finished_scanner_wait_time, TUnit::TIME_NS) << ", ";
|
|
}
|
|
// Only unfinished scanners here
|
|
for (auto& scanner : _scanners) {
|
|
// Scanners are in ObjPool in ScanNode,
|
|
// so no need to delete them here.
|
|
// Add per scanner running time before close them
|
|
scanner_statistics << PrettyPrinter::print(scanner->get_time_cost_ns(), TUnit::TIME_NS)
|
|
<< ", ";
|
|
scanner_rows_read << PrettyPrinter::print(scanner->get_rows_read(), TUnit::UNIT)
|
|
<< ", ";
|
|
scanner_wait_worker_time
|
|
<< PrettyPrinter::print(scanner->get_scanner_wait_worker_timer(),
|
|
TUnit::TIME_NS)
|
|
<< ", ";
|
|
}
|
|
scanner_statistics << "]";
|
|
scanner_rows_read << "]";
|
|
scanner_wait_worker_time << "]";
|
|
node->_scanner_profile->add_info_string("PerScannerRunningTime", scanner_statistics.str());
|
|
node->_scanner_profile->add_info_string("PerScannerRowsRead", scanner_rows_read.str());
|
|
node->_scanner_profile->add_info_string("PerScannerWaitTime",
|
|
scanner_wait_worker_time.str());
|
|
}
|
|
// Only unfinished scanners here
|
|
for (auto& scanner : _scanners) {
|
|
scanner->close(state);
|
|
// Scanners are in ObjPool in ScanNode,
|
|
// so no need to delete them here.
|
|
}
|
|
_scanners.clear();
|
|
return Status::OK();
|
|
}
|
|
|
|
void ScannerContext::clear_and_join(VScanNode* node, RuntimeState* state) {
|
|
std::unique_lock l(_transfer_lock);
|
|
do {
|
|
if (_num_running_scanners == 0 && _num_scheduling_ctx == 0) {
|
|
break;
|
|
} else {
|
|
DCHECK(!state->enable_pipeline_exec());
|
|
while (!(_num_running_scanners == 0 && _num_scheduling_ctx == 0)) {
|
|
_ctx_finish_cv.wait(l);
|
|
}
|
|
break;
|
|
}
|
|
} while (false);
|
|
|
|
for (const auto& tid : _btids) {
|
|
bthread_join(tid, nullptr);
|
|
}
|
|
// Must wait all running scanners stop running.
|
|
// So that we can make sure to close all scanners.
|
|
_close_and_clear_scanners(node, state);
|
|
|
|
_blocks_queue.clear();
|
|
}
|
|
|
|
bool ScannerContext::no_schedule() {
|
|
std::unique_lock l(_transfer_lock);
|
|
return _num_running_scanners == 0 && _num_scheduling_ctx == 0;
|
|
}
|
|
|
|
std::string ScannerContext::debug_string() {
|
|
return fmt::format(
|
|
"id: {}, sacnners: {}, blocks in queue: {},"
|
|
" status: {}, _should_stop: {}, _is_finished: {}, free blocks: {},"
|
|
" limit: {}, _num_running_scanners: {}, _num_scheduling_ctx: {}, _max_thread_num: {},"
|
|
" _block_per_scanner: {}, _cur_bytes_in_queue: {}, MAX_BYTE_OF_QUEUE: {}",
|
|
ctx_id, _scanners.size(), _blocks_queue.size(), status().ok(), _should_stop,
|
|
_is_finished, _free_blocks.size_approx(), limit, _num_running_scanners,
|
|
_num_scheduling_ctx, _max_thread_num, _block_per_scanner, _cur_bytes_in_queue,
|
|
_max_bytes_in_queue);
|
|
}
|
|
|
|
void ScannerContext::reschedule_scanner_ctx() {
|
|
std::lock_guard l(_transfer_lock);
|
|
auto state = _scanner_scheduler->submit(this);
|
|
//todo(wb) rethinking is it better to mark current scan_context failed when submit failed many times?
|
|
if (state.ok()) {
|
|
_num_scheduling_ctx++;
|
|
} else {
|
|
set_status_on_error(state, false);
|
|
}
|
|
}
|
|
|
|
void ScannerContext::push_back_scanner_and_reschedule(VScannerSPtr scanner) {
|
|
{
|
|
std::unique_lock l(_scanners_lock);
|
|
_scanners.push_front(scanner);
|
|
}
|
|
std::lock_guard l(_transfer_lock);
|
|
if (has_enough_space_in_blocks_queue()) {
|
|
auto state = _scanner_scheduler->submit(this);
|
|
if (state.ok()) {
|
|
_num_scheduling_ctx++;
|
|
} else {
|
|
set_status_on_error(state, false);
|
|
}
|
|
}
|
|
|
|
// Notice that after calling "_scanners.push_front(scanner)", there may be other ctx in scheduler
|
|
// to schedule that scanner right away, and in that schedule run, the scanner may be marked as closed
|
|
// before we call the following if() block.
|
|
// So we need "scanner->set_counted_down()" to avoid "_num_unfinished_scanners" being decreased twice by
|
|
// same scanner.
|
|
if (scanner->need_to_close() && scanner->set_counted_down() &&
|
|
(--_num_unfinished_scanners) == 0) {
|
|
_dispose_coloate_blocks_not_in_queue();
|
|
_is_finished = true;
|
|
_blocks_queue_added_cv.notify_one();
|
|
}
|
|
// In pipeline engine, doris will close scanners when `no_schedule`.
|
|
_num_running_scanners--;
|
|
_ctx_finish_cv.notify_one();
|
|
}
|
|
|
|
void ScannerContext::get_next_batch_of_scanners(std::list<VScannerSPtr>* current_run) {
|
|
// 1. Calculate how many scanners should be scheduled at this run.
|
|
int thread_slot_num = 0;
|
|
{
|
|
// If there are enough space in blocks queue,
|
|
// the scanner number depends on the _free_blocks numbers
|
|
thread_slot_num = cal_thread_slot_num_by_free_block_num();
|
|
}
|
|
|
|
// 2. get #thread_slot_num scanners from ctx->scanners
|
|
// and put them into "this_run".
|
|
{
|
|
std::unique_lock l(_scanners_lock);
|
|
for (int i = 0; i < thread_slot_num && !_scanners.empty();) {
|
|
VScannerSPtr scanner = _scanners.front();
|
|
_scanners.pop_front();
|
|
if (scanner->need_to_close()) {
|
|
_finished_scanner_runtime.push_back(scanner->get_time_cost_ns());
|
|
_finished_scanner_rows_read.push_back(scanner->get_rows_read());
|
|
_finished_scanner_wait_worker_time.push_back(
|
|
scanner->get_scanner_wait_worker_timer());
|
|
scanner->close(_state);
|
|
} else {
|
|
current_run->push_back(scanner);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
taskgroup::TaskGroup* ScannerContext::get_task_group() const {
|
|
return _state->get_query_ctx()->get_task_group();
|
|
}
|
|
|
|
} // namespace doris::vectorized
|