604 lines
24 KiB
C++
604 lines
24 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
// This file is copied from
|
|
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Common/PODArray.h
|
|
// and modified by Doris
|
|
|
|
#pragma once
|
|
|
|
#include <common/compiler_util.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <algorithm>
|
|
#include <boost/core/noncopyable.hpp>
|
|
#include <boost/iterator/iterator_adaptor.hpp>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <initializer_list>
|
|
#include <utility>
|
|
|
|
// IWYU pragma: no_include <opentelemetry/common/threadlocal.h>
|
|
#include "common/compiler_util.h" // IWYU pragma: keep
|
|
#include "vec/common/allocator.h" // IWYU pragma: keep
|
|
#include "vec/common/bit_helpers.h"
|
|
#include "vec/common/memcpy_small.h"
|
|
|
|
#ifndef NDEBUG
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#include "vec/common/pod_array_fwd.h"
|
|
|
|
namespace doris::vectorized {
|
|
|
|
/** A dynamic array for POD types.
|
|
* Designed for a small number of large arrays (rather than a lot of small ones).
|
|
* To be more precise - for use in ColumnVector.
|
|
* It differs from std::vector in that it does not initialize the elements.
|
|
*
|
|
* Made noncopyable so that there are no accidential copies. You can copy the data using `assign` method.
|
|
*
|
|
* Only part of the std::vector interface is supported.
|
|
*
|
|
* The default constructor creates an empty object that does not allocate memory.
|
|
* Then the memory is allocated at least initial_bytes bytes.
|
|
*
|
|
* If you insert elements with push_back, without making a `reserve`, then PODArray is about 2.5 times faster than std::vector.
|
|
*
|
|
* The template parameter `pad_right` - always allocate at the end of the array as many unused bytes.
|
|
* Can be used to make optimistic reading, writing, copying with unaligned SIMD instructions.
|
|
*
|
|
* The template parameter `pad_left` - always allocate memory before 0th element of the array (rounded up to the whole number of elements)
|
|
* and zero initialize -1th element. It allows to use -1th element that will have value 0.
|
|
* This gives performance benefits when converting an array of offsets to array of sizes.
|
|
*
|
|
* Some methods using allocator have TAllocatorParams variadic arguments.
|
|
* These arguments will be passed to corresponding methods of TAllocator.
|
|
* Example: pointer to Arena, that is used for allocations.
|
|
*
|
|
* Why Allocator is not passed through constructor, as it is done in C++ standard library?
|
|
* Because sometimes we have many small objects, that share same allocator with same parameters,
|
|
* and we must avoid larger object size due to storing the same parameters in each object.
|
|
* This is required for states of aggregate functions.
|
|
*
|
|
* PODArray does not have memset 0 when allocating memory, therefore, the query mem tracker is virtual memory,
|
|
* which will cause the query memory statistics to be higher than the actual physical memory.
|
|
*
|
|
* TODO Pass alignment to Allocator.
|
|
* TODO Allow greater alignment than alignof(T). Example: array of char aligned to page size.
|
|
*/
|
|
static constexpr size_t EmptyPODArraySize = 1024;
|
|
extern const char empty_pod_array[EmptyPODArraySize];
|
|
|
|
/** Base class that depend only on size of element, not on element itself.
|
|
* You can static_cast to this class if you want to insert some data regardless to the actual type T.
|
|
*/
|
|
template <size_t ELEMENT_SIZE, size_t initial_bytes, typename TAllocator, size_t pad_right_,
|
|
size_t pad_left_>
|
|
class PODArrayBase : private boost::noncopyable,
|
|
private TAllocator /// empty base optimization
|
|
{
|
|
protected:
|
|
/// Round padding up to an whole number of elements to simplify arithmetic.
|
|
static constexpr size_t pad_right = integerRoundUp(pad_right_, ELEMENT_SIZE);
|
|
/// pad_left is also rounded up to 16 bytes to maintain alignment of allocated memory.
|
|
static constexpr size_t pad_left = integerRoundUp(integerRoundUp(pad_left_, ELEMENT_SIZE), 16);
|
|
/// Empty array will point to this static memory as padding.
|
|
static constexpr char* null =
|
|
pad_left ? const_cast<char*>(empty_pod_array) + EmptyPODArraySize : nullptr;
|
|
|
|
static_assert(pad_left <= EmptyPODArraySize &&
|
|
"Left Padding exceeds EmptyPODArraySize. Is the element size too large?");
|
|
|
|
char* c_start = null; /// Does not include pad_left.
|
|
char* c_end = null;
|
|
char* c_end_of_storage = null; /// Does not include pad_right.
|
|
|
|
/// The amount of memory occupied by the num_elements of the elements.
|
|
static size_t byte_size(size_t num_elements) { return num_elements * ELEMENT_SIZE; }
|
|
|
|
/// Minimum amount of memory to allocate for num_elements, including padding.
|
|
static size_t minimum_memory_for_elements(size_t num_elements) {
|
|
return byte_size(num_elements) + pad_right + pad_left;
|
|
}
|
|
|
|
void alloc_for_num_elements(size_t num_elements) {
|
|
alloc(round_up_to_power_of_two_or_zero(minimum_memory_for_elements(num_elements)));
|
|
}
|
|
|
|
template <typename... TAllocatorParams>
|
|
void alloc(size_t bytes, TAllocatorParams&&... allocator_params) {
|
|
c_start = c_end = reinterpret_cast<char*>(TAllocator::alloc(
|
|
bytes, std::forward<TAllocatorParams>(allocator_params)...)) +
|
|
pad_left;
|
|
c_end_of_storage = c_start + bytes - pad_right - pad_left;
|
|
|
|
if (pad_left) memset(c_start - ELEMENT_SIZE, 0, ELEMENT_SIZE);
|
|
}
|
|
|
|
void dealloc() {
|
|
if (c_start == null) return;
|
|
|
|
unprotect();
|
|
|
|
TAllocator::free(c_start - pad_left, allocated_bytes());
|
|
}
|
|
|
|
template <typename... TAllocatorParams>
|
|
void realloc(size_t bytes, TAllocatorParams&&... allocator_params) {
|
|
if (c_start == null) {
|
|
alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...);
|
|
return;
|
|
}
|
|
|
|
unprotect();
|
|
|
|
ptrdiff_t end_diff = c_end - c_start;
|
|
|
|
c_start = reinterpret_cast<char*>(TAllocator::realloc(
|
|
c_start - pad_left, allocated_bytes(), bytes,
|
|
std::forward<TAllocatorParams>(allocator_params)...)) +
|
|
pad_left;
|
|
|
|
c_end = c_start + end_diff;
|
|
c_end_of_storage = c_start + bytes - pad_right - pad_left;
|
|
}
|
|
|
|
bool is_initialized() const {
|
|
return (c_start != null) && (c_end != null) && (c_end_of_storage != null);
|
|
}
|
|
|
|
bool is_allocated_from_stack() const {
|
|
constexpr size_t stack_threshold = TAllocator::get_stack_threshold();
|
|
return (stack_threshold > 0) && (allocated_bytes() <= stack_threshold);
|
|
}
|
|
|
|
template <typename... TAllocatorParams>
|
|
void reserve_for_next_size(TAllocatorParams&&... allocator_params) {
|
|
if (size() == 0) {
|
|
// The allocated memory should be multiplication of ELEMENT_SIZE to hold the element, otherwise,
|
|
// memory issue such as corruption could appear in edge case.
|
|
realloc(std::max(integerRoundUp(initial_bytes, ELEMENT_SIZE),
|
|
minimum_memory_for_elements(1)),
|
|
std::forward<TAllocatorParams>(allocator_params)...);
|
|
} else
|
|
realloc(allocated_bytes() * 2, std::forward<TAllocatorParams>(allocator_params)...);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Make memory region readonly with mprotect if it is large enough.
|
|
/// The operation is slow and performed only for debug builds.
|
|
void protect_impl(int prot) {
|
|
static constexpr size_t PROTECT_PAGE_SIZE = 4096;
|
|
|
|
char* left_rounded_up = reinterpret_cast<char*>(
|
|
(reinterpret_cast<intptr_t>(c_start) - pad_left + PROTECT_PAGE_SIZE - 1) /
|
|
PROTECT_PAGE_SIZE * PROTECT_PAGE_SIZE);
|
|
char* right_rounded_down =
|
|
reinterpret_cast<char*>((reinterpret_cast<intptr_t>(c_end_of_storage) + pad_right) /
|
|
PROTECT_PAGE_SIZE * PROTECT_PAGE_SIZE);
|
|
|
|
if (right_rounded_down > left_rounded_up) {
|
|
size_t length = right_rounded_down - left_rounded_up;
|
|
if (0 != mprotect(left_rounded_up, length, prot)) throw std::exception();
|
|
}
|
|
}
|
|
|
|
/// Restore memory protection in destructor or realloc for further reuse by allocator.
|
|
bool mprotected = false;
|
|
#endif
|
|
|
|
public:
|
|
bool empty() const { return c_end == c_start; }
|
|
size_t size() const { return (c_end - c_start) / ELEMENT_SIZE; }
|
|
size_t capacity() const { return (c_end_of_storage - c_start) / ELEMENT_SIZE; }
|
|
|
|
/// This method is safe to use only for information about memory usage.
|
|
size_t allocated_bytes() const { return c_end_of_storage - c_start + pad_right + pad_left; }
|
|
|
|
void clear() { c_end = c_start; }
|
|
|
|
template <typename... TAllocatorParams>
|
|
void reserve(size_t n, TAllocatorParams&&... allocator_params) {
|
|
if (n > capacity())
|
|
realloc(round_up_to_power_of_two_or_zero(minimum_memory_for_elements(n)),
|
|
std::forward<TAllocatorParams>(allocator_params)...);
|
|
}
|
|
|
|
template <typename... TAllocatorParams>
|
|
void resize(size_t n, TAllocatorParams&&... allocator_params) {
|
|
reserve(n, std::forward<TAllocatorParams>(allocator_params)...);
|
|
resize_assume_reserved(n);
|
|
}
|
|
|
|
void resize_assume_reserved(const size_t n) { c_end = c_start + byte_size(n); }
|
|
|
|
const char* raw_data() const { return c_start; }
|
|
|
|
template <typename... TAllocatorParams>
|
|
void push_back_raw(const char* ptr, TAllocatorParams&&... allocator_params) {
|
|
if (UNLIKELY(c_end == c_end_of_storage))
|
|
reserve_for_next_size(std::forward<TAllocatorParams>(allocator_params)...);
|
|
|
|
memcpy(c_end, ptr, ELEMENT_SIZE);
|
|
c_end += byte_size(1);
|
|
}
|
|
|
|
void protect() {
|
|
#ifndef NDEBUG
|
|
protect_impl(PROT_READ);
|
|
mprotected = true;
|
|
#endif
|
|
}
|
|
|
|
void unprotect() {
|
|
#ifndef NDEBUG
|
|
if (mprotected) protect_impl(PROT_WRITE);
|
|
mprotected = false;
|
|
#endif
|
|
}
|
|
|
|
~PODArrayBase() { dealloc(); }
|
|
};
|
|
|
|
template <typename T, size_t initial_bytes, typename TAllocator, size_t pad_right_,
|
|
size_t pad_left_>
|
|
class PODArray : public PODArrayBase<sizeof(T), initial_bytes, TAllocator, pad_right_, pad_left_> {
|
|
protected:
|
|
using Base = PODArrayBase<sizeof(T), initial_bytes, TAllocator, pad_right_, pad_left_>;
|
|
|
|
T* t_start() { return reinterpret_cast<T*>(this->c_start); }
|
|
T* t_end() { return reinterpret_cast<T*>(this->c_end); }
|
|
T* t_end_of_storage() { return reinterpret_cast<T*>(this->c_end_of_storage); }
|
|
|
|
const T* t_start() const { return reinterpret_cast<const T*>(this->c_start); }
|
|
const T* t_end() const { return reinterpret_cast<const T*>(this->c_end); }
|
|
const T* t_end_of_storage() const { return reinterpret_cast<const T*>(this->c_end_of_storage); }
|
|
|
|
public:
|
|
using value_type = T;
|
|
|
|
/// You can not just use `typedef`, because there is ambiguity for the constructors and `assign` functions.
|
|
struct iterator : public boost::iterator_adaptor<iterator, T*> {
|
|
iterator() {}
|
|
iterator(T* ptr_) : iterator::iterator_adaptor_(ptr_) {}
|
|
};
|
|
|
|
struct const_iterator : public boost::iterator_adaptor<const_iterator, const T*> {
|
|
const_iterator() {}
|
|
const_iterator(const T* ptr_) : const_iterator::iterator_adaptor_(ptr_) {}
|
|
};
|
|
|
|
PODArray() {}
|
|
|
|
PODArray(size_t n) {
|
|
this->alloc_for_num_elements(n);
|
|
this->c_end += this->byte_size(n);
|
|
}
|
|
|
|
PODArray(size_t n, const T& x) {
|
|
this->alloc_for_num_elements(n);
|
|
assign(n, x);
|
|
}
|
|
|
|
PODArray(const_iterator from_begin, const_iterator from_end) {
|
|
this->alloc_for_num_elements(from_end - from_begin);
|
|
insert(from_begin, from_end);
|
|
}
|
|
|
|
PODArray(std::initializer_list<T> il) : PODArray(std::begin(il), std::end(il)) {}
|
|
|
|
PODArray(PODArray&& other) { this->swap(other); }
|
|
|
|
PODArray& operator=(PODArray&& other) {
|
|
this->swap(other);
|
|
return *this;
|
|
}
|
|
|
|
T* data() { return t_start(); }
|
|
const T* data() const { return t_start(); }
|
|
|
|
/// The index is signed to access -1th element without pointer overflow.
|
|
T& operator[](ssize_t n) {
|
|
/// <= size, because taking address of one element past memory range is Ok in C++ (expression like &arr[arr.size()] is perfectly valid).
|
|
assert((n >= (static_cast<ssize_t>(pad_left_) ? -1 : 0)) &&
|
|
(n <= static_cast<ssize_t>(this->size())));
|
|
return t_start()[n];
|
|
}
|
|
|
|
const T& operator[](ssize_t n) const {
|
|
assert((n >= (static_cast<ssize_t>(pad_left_) ? -1 : 0)) &&
|
|
(n <= static_cast<ssize_t>(this->size())));
|
|
return t_start()[n];
|
|
}
|
|
|
|
T& front() { return t_start()[0]; }
|
|
T& back() { return t_end()[-1]; }
|
|
const T& front() const { return t_start()[0]; }
|
|
const T& back() const { return t_end()[-1]; }
|
|
|
|
iterator begin() { return t_start(); }
|
|
iterator end() { return t_end(); }
|
|
const_iterator begin() const { return t_start(); }
|
|
const_iterator end() const { return t_end(); }
|
|
const_iterator cbegin() const { return t_start(); }
|
|
const_iterator cend() const { return t_end(); }
|
|
|
|
void* get_end_ptr() const { return this->c_end; }
|
|
void set_end_ptr(void* ptr) { this->c_end = (char*)ptr; }
|
|
|
|
/// Same as resize, but zeroes new elements.
|
|
void resize_fill(size_t n) {
|
|
size_t old_size = this->size();
|
|
if (n > old_size) {
|
|
this->reserve(n);
|
|
memset(this->c_end, 0, this->byte_size(n - old_size));
|
|
}
|
|
this->c_end = this->c_start + this->byte_size(n);
|
|
}
|
|
|
|
void resize_fill(size_t n, const T& value) {
|
|
size_t old_size = this->size();
|
|
if (n > old_size) {
|
|
this->reserve(n);
|
|
std::fill(t_end(), t_end() + n - old_size, value);
|
|
}
|
|
this->c_end = this->c_start + this->byte_size(n);
|
|
}
|
|
|
|
template <typename U, typename... TAllocatorParams>
|
|
void push_back(U&& x, TAllocatorParams&&... allocator_params) {
|
|
if (UNLIKELY(this->c_end == this->c_end_of_storage))
|
|
this->reserve_for_next_size(std::forward<TAllocatorParams>(allocator_params)...);
|
|
|
|
new (t_end()) T(std::forward<U>(x));
|
|
this->c_end += this->byte_size(1);
|
|
}
|
|
|
|
template <typename U, typename... TAllocatorParams>
|
|
void add_num_element(U&& x, uint32_t num, TAllocatorParams&&... allocator_params) {
|
|
if (num != 0) {
|
|
const auto new_end = this->c_end + this->byte_size(num);
|
|
if (UNLIKELY(new_end > this->c_end_of_storage)) {
|
|
this->reserve(this->size() + num);
|
|
}
|
|
std::fill(t_end(), t_end() + num, x);
|
|
this->c_end = new_end;
|
|
}
|
|
}
|
|
|
|
template <typename U, typename... TAllocatorParams>
|
|
void add_num_element_without_reserve(U&& x, uint32_t num,
|
|
TAllocatorParams&&... allocator_params) {
|
|
std::fill(t_end(), t_end() + num, x);
|
|
this->c_end += sizeof(T) * num;
|
|
}
|
|
|
|
/**
|
|
* you must make sure to reserve podarray before calling this method
|
|
* remove branch if can improve performance
|
|
*/
|
|
template <typename U, typename... TAllocatorParams>
|
|
void push_back_without_reserve(U&& x, TAllocatorParams&&... allocator_params) {
|
|
new (t_end()) T(std::forward<U>(x));
|
|
this->c_end += this->byte_size(1);
|
|
}
|
|
|
|
/** This method doesn't allow to pass parameters for Allocator,
|
|
* and it couldn't be used if Allocator requires custom parameters.
|
|
*/
|
|
template <typename... Args>
|
|
void emplace_back(Args&&... args) {
|
|
if (UNLIKELY(this->c_end == this->c_end_of_storage)) this->reserve_for_next_size();
|
|
|
|
new (t_end()) T(std::forward<Args>(args)...);
|
|
this->c_end += this->byte_size(1);
|
|
}
|
|
|
|
void pop_back() { this->c_end -= this->byte_size(1); }
|
|
|
|
/// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated.
|
|
template <typename It1, typename It2, typename... TAllocatorParams>
|
|
void insert_prepare(It1 from_begin, It2 from_end, TAllocatorParams&&... allocator_params) {
|
|
size_t required_capacity = this->size() + (from_end - from_begin);
|
|
if (required_capacity > this->capacity())
|
|
this->reserve(round_up_to_power_of_two_or_zero(required_capacity),
|
|
std::forward<TAllocatorParams>(allocator_params)...);
|
|
}
|
|
|
|
/// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated.
|
|
template <typename It1, typename It2, typename... TAllocatorParams>
|
|
void insert(It1 from_begin, It2 from_end, TAllocatorParams&&... allocator_params) {
|
|
insert_prepare(from_begin, from_end, std::forward<TAllocatorParams>(allocator_params)...);
|
|
|
|
insert_assume_reserved(from_begin, from_end);
|
|
}
|
|
|
|
/// Works under assumption, that it's possible to read up to 15 excessive bytes after `from_end` and this PODArray is padded.
|
|
template <typename It1, typename It2, typename... TAllocatorParams>
|
|
void insert_small_allow_read_write_overflow15(It1 from_begin, It2 from_end,
|
|
TAllocatorParams&&... allocator_params) {
|
|
static_assert(pad_right_ >= 15);
|
|
insert_prepare(from_begin, from_end, std::forward<TAllocatorParams>(allocator_params)...);
|
|
size_t bytes_to_copy = this->byte_size(from_end - from_begin);
|
|
memcpy_small_allow_read_write_overflow15(
|
|
this->c_end, reinterpret_cast<const void*>(&*from_begin), bytes_to_copy);
|
|
this->c_end += bytes_to_copy;
|
|
}
|
|
|
|
template <typename It1, typename It2>
|
|
void insert(iterator it, It1 from_begin, It2 from_end) {
|
|
insert_prepare(from_begin, from_end);
|
|
|
|
size_t bytes_to_copy = this->byte_size(from_end - from_begin);
|
|
size_t bytes_to_move = (end() - it) * sizeof(T);
|
|
|
|
if (UNLIKELY(bytes_to_move))
|
|
memcpy(this->c_end + bytes_to_copy - bytes_to_move, this->c_end - bytes_to_move,
|
|
bytes_to_move);
|
|
|
|
memcpy(this->c_end - bytes_to_move, reinterpret_cast<const void*>(&*from_begin),
|
|
bytes_to_copy);
|
|
this->c_end += bytes_to_copy;
|
|
}
|
|
|
|
template <typename It1, typename It2>
|
|
void insert_assume_reserved(It1 from_begin, It2 from_end) {
|
|
size_t bytes_to_copy = this->byte_size(from_end - from_begin);
|
|
memcpy(this->c_end, reinterpret_cast<const void*>(&*from_begin), bytes_to_copy);
|
|
this->c_end += bytes_to_copy;
|
|
}
|
|
|
|
void swap(PODArray& rhs) {
|
|
#ifndef NDEBUG
|
|
this->unprotect();
|
|
rhs.unprotect();
|
|
#endif
|
|
|
|
/// Swap two PODArray objects, arr1 and arr2, that satisfy the following conditions:
|
|
/// - The elements of arr1 are stored on stack.
|
|
/// - The elements of arr2 are stored on heap.
|
|
auto swap_stack_heap = [this](PODArray& arr1, PODArray& arr2) {
|
|
size_t stack_size = arr1.size();
|
|
size_t stack_allocated = arr1.allocated_bytes();
|
|
|
|
size_t heap_size = arr2.size();
|
|
size_t heap_allocated = arr2.allocated_bytes();
|
|
|
|
/// Keep track of the stack content we have to copy.
|
|
char* stack_c_start = arr1.c_start;
|
|
|
|
/// arr1 takes ownership of the heap memory of arr2.
|
|
arr1.c_start = arr2.c_start;
|
|
arr1.c_end_of_storage = arr1.c_start + heap_allocated - arr1.pad_right;
|
|
arr1.c_end = arr1.c_start + this->byte_size(heap_size);
|
|
|
|
/// Allocate stack space for arr2.
|
|
arr2.alloc(stack_allocated);
|
|
/// Copy the stack content.
|
|
memcpy(arr2.c_start, stack_c_start, this->byte_size(stack_size));
|
|
arr2.c_end = arr2.c_start + this->byte_size(stack_size);
|
|
};
|
|
|
|
auto do_move = [this](PODArray& src, PODArray& dest) {
|
|
if (src.is_allocated_from_stack()) {
|
|
dest.dealloc();
|
|
dest.alloc(src.allocated_bytes());
|
|
memcpy(dest.c_start, src.c_start, this->byte_size(src.size()));
|
|
dest.c_end = dest.c_start + (src.c_end - src.c_start);
|
|
|
|
src.c_start = Base::null;
|
|
src.c_end = Base::null;
|
|
src.c_end_of_storage = Base::null;
|
|
} else {
|
|
std::swap(dest.c_start, src.c_start);
|
|
std::swap(dest.c_end, src.c_end);
|
|
std::swap(dest.c_end_of_storage, src.c_end_of_storage);
|
|
}
|
|
};
|
|
|
|
if (!this->is_initialized() && !rhs.is_initialized()) {
|
|
return;
|
|
} else if (!this->is_initialized() && rhs.is_initialized()) {
|
|
do_move(rhs, *this);
|
|
return;
|
|
} else if (this->is_initialized() && !rhs.is_initialized()) {
|
|
do_move(*this, rhs);
|
|
return;
|
|
}
|
|
|
|
if (this->is_allocated_from_stack() && rhs.is_allocated_from_stack()) {
|
|
size_t min_size = std::min(this->size(), rhs.size());
|
|
size_t max_size = std::max(this->size(), rhs.size());
|
|
|
|
for (size_t i = 0; i < min_size; ++i) std::swap(this->operator[](i), rhs[i]);
|
|
|
|
if (this->size() == max_size) {
|
|
for (size_t i = min_size; i < max_size; ++i) rhs[i] = this->operator[](i);
|
|
} else {
|
|
for (size_t i = min_size; i < max_size; ++i) this->operator[](i) = rhs[i];
|
|
}
|
|
|
|
size_t lhs_size = this->size();
|
|
size_t lhs_allocated = this->allocated_bytes();
|
|
|
|
size_t rhs_size = rhs.size();
|
|
size_t rhs_allocated = rhs.allocated_bytes();
|
|
|
|
this->c_end_of_storage = this->c_start + rhs_allocated - Base::pad_right;
|
|
rhs.c_end_of_storage = rhs.c_start + lhs_allocated - Base::pad_right;
|
|
|
|
this->c_end = this->c_start + this->byte_size(rhs_size);
|
|
rhs.c_end = rhs.c_start + this->byte_size(lhs_size);
|
|
} else if (this->is_allocated_from_stack() && !rhs.is_allocated_from_stack()) {
|
|
swap_stack_heap(*this, rhs);
|
|
} else if (!this->is_allocated_from_stack() && rhs.is_allocated_from_stack()) {
|
|
swap_stack_heap(rhs, *this);
|
|
} else {
|
|
std::swap(this->c_start, rhs.c_start);
|
|
std::swap(this->c_end, rhs.c_end);
|
|
std::swap(this->c_end_of_storage, rhs.c_end_of_storage);
|
|
}
|
|
}
|
|
|
|
void assign(size_t n, const T& x) {
|
|
this->resize(n);
|
|
std::fill(begin(), end(), x);
|
|
}
|
|
|
|
template <typename It1, typename It2>
|
|
void assign(It1 from_begin, It2 from_end) {
|
|
size_t required_capacity = from_end - from_begin;
|
|
if (required_capacity > this->capacity())
|
|
this->reserve(round_up_to_power_of_two_or_zero(required_capacity));
|
|
|
|
size_t bytes_to_copy = this->byte_size(required_capacity);
|
|
memcpy(this->c_start, reinterpret_cast<const void*>(&*from_begin), bytes_to_copy);
|
|
this->c_end = this->c_start + bytes_to_copy;
|
|
}
|
|
|
|
void assign(const PODArray& from) { assign(from.begin(), from.end()); }
|
|
|
|
bool operator==(const PODArray& other) const {
|
|
if (this->size() != other.size()) return false;
|
|
|
|
const_iterator this_it = begin();
|
|
const_iterator that_it = other.begin();
|
|
|
|
while (this_it != end()) {
|
|
if (*this_it != *that_it) return false;
|
|
|
|
++this_it;
|
|
++that_it;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const PODArray& other) const { return !operator==(other); }
|
|
};
|
|
|
|
template <typename T, size_t initial_bytes, typename TAllocator, size_t pad_right_>
|
|
void swap(PODArray<T, initial_bytes, TAllocator, pad_right_>& lhs,
|
|
PODArray<T, initial_bytes, TAllocator, pad_right_>& rhs) {
|
|
lhs.swap(rhs);
|
|
}
|
|
|
|
} // namespace doris::vectorized
|