Files
doris/be/src/exec/partitioned_aggregation_node.cc
2019-06-14 23:38:31 +08:00

1575 lines
68 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/partitioned_aggregation_node.h"
#include <math.h>
#include <sstream>
#include <thrift/protocol/TDebugProtocol.h>
#include "codegen/codegen_anyval.h"
#include "codegen/llvm_codegen.h"
#include "exec/partitioned_hash_table.inline.h"
#include "exprs/agg_fn_evaluator.h"
#include "exprs/expr.h"
#include "exprs/expr_context.h"
#include "exprs/slot_ref.h"
#include "runtime/buffered_tuple_stream2.inline.h"
#include "runtime/descriptors.h"
#include "runtime/mem_pool.h"
#include "runtime/raw_value.h"
#include "runtime/row_batch.h"
#include "runtime/runtime_state.h"
#include "runtime/tuple.h"
#include "runtime/tuple_row.h"
#include "udf/udf_internal.h"
#include "util/runtime_profile.h"
#include "util/stack_util.h"
#include "gen_cpp/Exprs_types.h"
#include "gen_cpp/PlanNodes_types.h"
// using namespace llvm;
using std::list;
namespace doris {
const char* PartitionedAggregationNode::_s_llvm_class_name =
"class.doris::PartitionedAggregationNode";
PartitionedAggregationNode::PartitionedAggregationNode(
ObjectPool* pool, const TPlanNode& tnode, const DescriptorTbl& descs) :
ExecNode(pool, tnode, descs),
_intermediate_tuple_id(tnode.agg_node.intermediate_tuple_id),
_intermediate_tuple_desc(NULL),
_output_tuple_id(tnode.agg_node.output_tuple_id),
_output_tuple_desc(NULL),
_needs_finalize(tnode.agg_node.need_finalize),
_needs_serialize(false),
_block_mgr_client(NULL),
_output_partition(NULL),
_process_row_batch_fn(NULL),
_build_timer(NULL),
_ht_resize_timer(NULL),
_get_results_timer(NULL),
_num_hash_buckets(NULL),
_partitions_created(NULL),
// _max_partition_level(NULL),
_num_row_repartitioned(NULL),
_num_repartitions(NULL),
_singleton_output_tuple(NULL),
_singleton_output_tuple_returned(true),
_partition_pool(new ObjectPool()) {
DCHECK_EQ(PARTITION_FANOUT, 1 << NUM_PARTITIONING_BITS);
}
Status PartitionedAggregationNode::init(const TPlanNode& tnode, RuntimeState* state) {
RETURN_IF_ERROR(ExecNode::init(tnode, state));
RETURN_IF_ERROR(
Expr::create_expr_trees(_pool, tnode.agg_node.grouping_exprs, &_probe_expr_ctxs));
for (int i = 0; i < tnode.agg_node.aggregate_functions.size(); ++i) {
AggFnEvaluator* evaluator = NULL;
RETURN_IF_ERROR(AggFnEvaluator::create(
_pool, tnode.agg_node.aggregate_functions[i], &evaluator));
_aggregate_evaluators.push_back(evaluator);
}
return Status::OK();
}
Status PartitionedAggregationNode::prepare(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
// Create the codegen object before preparing _conjunct_ctxs and _children, so that any
// ScalarFnCalls will use codegen.
// TODO: this is brittle and hard to reason about, revisit
// if (state->codegen_enabled()) {
// LlvmCodeGen* codegen;
// RETURN_IF_ERROR(state->get_codegen(&codegen));
// }
RETURN_IF_ERROR(ExecNode::prepare(state));
_state = state;
_mem_pool.reset(new MemPool(mem_tracker()));
_agg_fn_pool.reset(new MemPool(expr_mem_tracker()));
_build_timer = ADD_TIMER(runtime_profile(), "BuildTime");
_ht_resize_timer = ADD_TIMER(runtime_profile(), "HTResizeTime");
_get_results_timer = ADD_TIMER(runtime_profile(), "GetResultsTime");
_num_hash_buckets = ADD_COUNTER(runtime_profile(), "HashBuckets", TUnit::UNIT);
_partitions_created = ADD_COUNTER(runtime_profile(), "PartitionsCreated", TUnit::UNIT);
// _max_partition_level = runtime_profile()->AddHighWaterMarkCounter(
// "MaxPartitionLevel", TUnit::UNIT);
_num_row_repartitioned = ADD_COUNTER(
runtime_profile(), "RowsRepartitioned", TUnit::UNIT);
_num_repartitions = ADD_COUNTER(runtime_profile(), "NumRepartitions", TUnit::UNIT);
_num_spilled_partitions = ADD_COUNTER(
runtime_profile(), "SpilledPartitions", TUnit::UNIT);
// _largest_partition_percent = runtime_profile()->AddHighWaterMarkCounter(
// "LargestPartitionPercent", TUnit::UNIT);
_intermediate_tuple_desc =
state->desc_tbl().get_tuple_descriptor(_intermediate_tuple_id);
_output_tuple_desc = state->desc_tbl().get_tuple_descriptor(_output_tuple_id);
DCHECK_EQ(_intermediate_tuple_desc->slots().size(), _output_tuple_desc->slots().size());
RETURN_IF_ERROR(
Expr::prepare(_probe_expr_ctxs, state, child(0)->row_desc(), expr_mem_tracker()));
// AddExprCtxsToFree(_probe_expr_ctxs);
_contains_var_len_grouping_exprs = false;
// Construct build exprs from _intermediate_agg_tuple_desc
for (int i = 0; i < _probe_expr_ctxs.size(); ++i) {
SlotDescriptor* desc = _intermediate_tuple_desc->slots()[i];
DCHECK(desc->type().type == TYPE_NULL ||
desc->type().type == _probe_expr_ctxs[i]->root()->type().type);
// Hack to avoid TYPE_NULL SlotRefs.
Expr* expr = desc->type().type != TYPE_NULL ?
new SlotRef(desc) : new SlotRef(desc, TYPE_BOOLEAN);
state->obj_pool()->add(expr);
_build_expr_ctxs.push_back(new ExprContext(expr));
state->obj_pool()->add(_build_expr_ctxs.back());
_contains_var_len_grouping_exprs |= expr->type().is_string_type();
}
// Construct a new row desc for preparing the build exprs because neither the child's
// nor this node's output row desc may contain the intermediate tuple, e.g.,
// in a single-node plan with an intermediate tuple different from the output tuple.
_intermediate_row_desc.reset(new RowDescriptor(_intermediate_tuple_desc, false));
RETURN_IF_ERROR(
Expr::prepare(_build_expr_ctxs, state, *_intermediate_row_desc, expr_mem_tracker()));
// AddExprCtxsToFree(_build_expr_ctxs);
int j = _probe_expr_ctxs.size();
for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++j) {
// Skip non-materialized slots; we don't have evaluators instantiated for those.
while (!_intermediate_tuple_desc->slots()[j]->is_materialized()) {
DCHECK_LT(j, _intermediate_tuple_desc->slots().size() - 1)
<< "#eval= " << _aggregate_evaluators.size()
<< " #probe=" << _probe_expr_ctxs.size();
++j;
}
// SlotDescriptor* intermediate_slot_desc = _intermediate_tuple_desc->slots()[j];
SlotDescriptor* output_slot_desc = _output_tuple_desc->slots()[j];
FunctionContext* agg_fn_ctx = NULL;
// RETURN_IF_ERROR(_aggregate_evaluators[i]->prepare(state, child(0)->row_desc(),
// intermediate_slot_desc, output_slot_desc, _agg_fn_pool.get(), &agg_fn_ctx));
RETURN_IF_ERROR(_aggregate_evaluators[i]->prepare(state, child(0)->row_desc(),
_agg_fn_pool.get(), output_slot_desc, output_slot_desc,
expr_mem_tracker(), &agg_fn_ctx));
_agg_fn_ctxs.push_back(agg_fn_ctx);
state->obj_pool()->add(agg_fn_ctx);
_needs_serialize |= _aggregate_evaluators[i]->supports_serialize();
}
if (_probe_expr_ctxs.empty()) {
// Create single output tuple now; we need to output something
// even if our input is empty.
_singleton_output_tuple =
construct_intermediate_tuple(_agg_fn_ctxs, _mem_pool.get(), NULL, NULL);
// Check for failures during AggFnEvaluator::init().
RETURN_IF_ERROR(_state->query_status());
_singleton_output_tuple_returned = false;
} else {
_ht_ctx.reset(new PartitionedHashTableCtx(_build_expr_ctxs, _probe_expr_ctxs, true, true,
state->fragment_hash_seed(), MAX_PARTITION_DEPTH, 1));
RETURN_IF_ERROR(_state->block_mgr2()->register_client(
min_required_buffers(), mem_tracker(), state, &_block_mgr_client));
RETURN_IF_ERROR(create_hash_partitions(0));
}
// TODO: Is there a need to create the stream here? If memory reservations work we may
// be able to create this stream lazily and only whenever we need to spill.
if (_needs_serialize && _block_mgr_client != NULL) {
_serialize_stream.reset(new BufferedTupleStream2(state, *_intermediate_row_desc,
state->block_mgr2(), _block_mgr_client, false /* use_initial_small_buffers */,
false /* read_write */));
RETURN_IF_ERROR(_serialize_stream->init(id(), runtime_profile(), false));
DCHECK(_serialize_stream->has_write_block());
}
// if (state->codegen_enabled()) {
// LlvmCodeGen* codegen;
// RETURN_IF_ERROR(state->get_codegen(&codegen));
// Function* codegen_process_row_batch_fn = codegen_process_batch();
// if (codegen_process_row_batch_fn != NULL) {
// codegen->AddFunctionToJit(codegen_process_row_batch_fn,
// reinterpret_cast<void**>(&_process_row_batch_fn));
// add_runtime_exec_option("Codegen Enabled");
// }
// }
return Status::OK();
}
Status PartitionedAggregationNode::open(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::open(state));
RETURN_IF_ERROR(Expr::open(_probe_expr_ctxs, state));
RETURN_IF_ERROR(Expr::open(_build_expr_ctxs, state));
DCHECK_EQ(_aggregate_evaluators.size(), _agg_fn_ctxs.size());
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
RETURN_IF_ERROR(_aggregate_evaluators[i]->open(state, _agg_fn_ctxs[i]));
}
// Read all the rows from the child and process them.
RETURN_IF_ERROR(_children[0]->open(state));
RowBatch batch(_children[0]->row_desc(), state->batch_size(), mem_tracker());
bool eos = false;
do {
RETURN_IF_CANCELLED(state);
// RETURN_IF_ERROR(QueryMaintenance(state));
RETURN_IF_ERROR(state->check_query_state());
RETURN_IF_ERROR(_children[0]->get_next(state, &batch, &eos));
if (UNLIKELY(VLOG_ROW_IS_ON)) {
for (int i = 0; i < batch.num_rows(); ++i) {
TupleRow* row = batch.get_row(i);
VLOG_ROW << "partition-agg-node input row: "
<< row->to_string(_children[0]->row_desc());
}
}
SCOPED_TIMER(_build_timer);
if (_process_row_batch_fn != NULL) {
RETURN_IF_ERROR(_process_row_batch_fn(this, &batch, _ht_ctx.get()));
} else if (_probe_expr_ctxs.empty()) {
RETURN_IF_ERROR(process_batch_no_grouping(&batch));
} else {
// VLOG_ROW << "partition-agg-node batch: " << batch->to_string();
// There is grouping, so we will do partitioned aggregation.
RETURN_IF_ERROR(process_batch<false>(&batch, _ht_ctx.get()));
}
batch.reset();
} while (!eos);
// Unless we are inside a subplan expecting to call open()/get_next() on the child
// again, the child can be closed at this point. We have consumed all of the input
// from the child and transfered ownership of the resources we need.
// if (!IsInSubplan()) {
child(0)->close(state);
// }
// Done consuming child(0)'s input. Move all the partitions in _hash_partitions
// to _spilled_partitions/_aggregated_partitions. We'll finish the processing in
// get_next().
if (!_probe_expr_ctxs.empty()) {
RETURN_IF_ERROR(move_hash_partitions(child(0)->rows_returned()));
}
return Status::OK();
}
Status PartitionedAggregationNode::get_next(RuntimeState* state, RowBatch* row_batch, bool* eos) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(exec_debug_action(TExecNodePhase::GETNEXT));
RETURN_IF_CANCELLED(state);
// RETURN_IF_ERROR(QueryMaintenance(state));
RETURN_IF_ERROR(state->check_query_state());
if (reached_limit()) {
*eos = true;
return Status::OK();
}
ExprContext** ctxs = &_conjunct_ctxs[0];
int num_ctxs = _conjunct_ctxs.size();
if (_probe_expr_ctxs.empty()) {
// There was grouping, so evaluate the conjuncts and return the single result row.
// We allow calling get_next() after eos, so don't return this row again.
if (!_singleton_output_tuple_returned) {
int row_idx = row_batch->add_row();
TupleRow* row = row_batch->get_row(row_idx);
Tuple* output_tuple = get_output_tuple(
_agg_fn_ctxs, _singleton_output_tuple, row_batch->tuple_data_pool());
row->set_tuple(0, output_tuple);
if (ExecNode::eval_conjuncts(ctxs, num_ctxs, row)) {
row_batch->commit_last_row();
++_num_rows_returned;
}
_singleton_output_tuple_returned = true;
}
// Keep the current chunk to amortize the memory allocation over a series
// of reset()/open()/get_next()* calls.
row_batch->tuple_data_pool()->acquire_data(_mem_pool.get(), true);
*eos = true;
COUNTER_SET(_rows_returned_counter, _num_rows_returned);
return Status::OK();
}
if (_output_iterator.at_end()) {
// Done with this partition, move onto the next one.
if (_output_partition != NULL) {
_output_partition->close(false);
_output_partition = NULL;
}
if (_aggregated_partitions.empty() && _spilled_partitions.empty()) {
// No more partitions, all done.
*eos = true;
return Status::OK();
}
// Process next partition.
RETURN_IF_ERROR(next_partition());
DCHECK(_output_partition != NULL);
}
SCOPED_TIMER(_get_results_timer);
int count = 0;
const int N = BitUtil::next_power_of_two(state->batch_size());
// Keeping returning rows from the current partition.
while (!_output_iterator.at_end() && !row_batch->at_capacity()) {
// This loop can go on for a long time if the conjuncts are very selective. Do query
// maintenance every N iterations.
if ((count++ & (N - 1)) == 0) {
RETURN_IF_CANCELLED(state);
// RETURN_IF_ERROR(QueryMaintenance(state));
RETURN_IF_ERROR(state->check_query_state());
}
int row_idx = row_batch->add_row();
TupleRow* row = row_batch->get_row(row_idx);
Tuple* intermediate_tuple = _output_iterator.get_tuple();
Tuple* output_tuple = get_output_tuple(
_output_partition->agg_fn_ctxs, intermediate_tuple, row_batch->tuple_data_pool());
_output_iterator.next();
row->set_tuple(0, output_tuple);
if (ExecNode::eval_conjuncts(ctxs, num_ctxs, row)) {
row_batch->commit_last_row();
++_num_rows_returned;
if (reached_limit()) {
break; // TODO: remove this check? is this expensive?
}
}
}
COUNTER_SET(_rows_returned_counter, _num_rows_returned);
*eos = reached_limit();
if (_output_iterator.at_end()) {
row_batch->mark_need_to_return();
}
return Status::OK();
}
void PartitionedAggregationNode::cleanup_hash_tbl(
const vector<FunctionContext*>& agg_fn_ctxs, PartitionedHashTable::Iterator it) {
if (!_needs_finalize && !_needs_serialize) {
return;
}
// Iterate through the remaining rows in the hash table and call serialize/finalize on
// them in order to free any memory allocated by UDAs.
if (_needs_finalize) {
// finalize() requires a dst tuple but we don't actually need the result,
// so allocate a single dummy tuple to avoid accumulating memory.
Tuple* dummy_dst = NULL;
dummy_dst = Tuple::create(_output_tuple_desc->byte_size(), _mem_pool.get());
while (!it.at_end()) {
Tuple* tuple = it.get_tuple();
AggFnEvaluator::finalize(_aggregate_evaluators, agg_fn_ctxs, tuple, dummy_dst);
it.next();
}
} else {
while (!it.at_end()) {
Tuple* tuple = it.get_tuple();
AggFnEvaluator::serialize(_aggregate_evaluators, agg_fn_ctxs, tuple);
it.next();
}
}
}
Status PartitionedAggregationNode::reset(RuntimeState* state) {
if (_probe_expr_ctxs.empty()) {
// Re-create the single output tuple for this non-grouping agg.
_singleton_output_tuple =
construct_intermediate_tuple(_agg_fn_ctxs, _mem_pool.get(), NULL, NULL);
// Check for failures during AggFnEvaluator::init().
RETURN_IF_ERROR(_state->query_status());
_singleton_output_tuple_returned = false;
} else {
// Reset the HT and the partitions for this grouping agg.
_ht_ctx->set_level(0);
close_partitions();
create_hash_partitions(0);
}
// return ExecNode::reset(state);
return Status::OK();
}
Status PartitionedAggregationNode::close(RuntimeState* state) {
if (is_closed()) {
return Status::OK();
}
if (!_singleton_output_tuple_returned) {
DCHECK_EQ(_agg_fn_ctxs.size(), _aggregate_evaluators.size());
get_output_tuple(_agg_fn_ctxs, _singleton_output_tuple, _mem_pool.get());
}
// Iterate through the remaining rows in the hash table and call serialize/finalize on
// them in order to free any memory allocated by UDAs
if (_output_partition != NULL) {
cleanup_hash_tbl(_output_partition->agg_fn_ctxs, _output_iterator);
_output_partition->close(false);
}
close_partitions();
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->close(state);
}
for (int i = 0; i < _agg_fn_ctxs.size(); ++i) {
_agg_fn_ctxs[i]->impl()->close();
}
if (_agg_fn_pool.get() != NULL) {
_agg_fn_pool->free_all();
}
if (_mem_pool.get() != NULL) {
_mem_pool->free_all();
}
if (_ht_ctx.get() != NULL) {
_ht_ctx->close();
}
if (_serialize_stream.get() != NULL) {
_serialize_stream->close();
}
if (_block_mgr_client != NULL) {
state->block_mgr2()->clear_reservations(_block_mgr_client);
}
Expr::close(_probe_expr_ctxs, state);
Expr::close(_build_expr_ctxs, state);
return ExecNode::close(state);
}
Status PartitionedAggregationNode::Partition::init_streams() {
agg_fn_pool.reset(new MemPool(parent->expr_mem_tracker()));
DCHECK_EQ(agg_fn_ctxs.size(), 0);
for (int i = 0; i < parent->_agg_fn_ctxs.size(); ++i) {
agg_fn_ctxs.push_back(parent->_agg_fn_ctxs[i]->impl()->clone(agg_fn_pool.get()));
parent->_partition_pool->add(agg_fn_ctxs[i]);
}
aggregated_row_stream.reset(new BufferedTupleStream2(parent->_state,
*parent->_intermediate_row_desc, parent->_state->block_mgr2(),
parent->_block_mgr_client, true /* use_initial_small_buffers */,
false /* read_write */));
RETURN_IF_ERROR(aggregated_row_stream->init(parent->id(), parent->runtime_profile(), true));
unaggregated_row_stream.reset(new BufferedTupleStream2(parent->_state,
parent->child(0)->row_desc(), parent->_state->block_mgr2(),
parent->_block_mgr_client, true /* use_initial_small_buffers */,
false /* read_write */));
// This stream is only used to spill, no need to ever have this pinned.
RETURN_IF_ERROR(unaggregated_row_stream->init(parent->id(), parent->runtime_profile(), false));
DCHECK(unaggregated_row_stream->has_write_block());
return Status::OK();
}
bool PartitionedAggregationNode::Partition::init_hash_table() {
DCHECK(hash_tbl.get() == NULL);
// We use the upper PARTITION_FANOUT num bits to pick the partition so only the
// remaining bits can be used for the hash table.
// TODO: we could switch to 64 bit hashes and then we don't need a max size.
// It might be reasonable to limit individual hash table size for other reasons
// though. Always start with small buffers.
// TODO: How many buckets? We currently use a default value, 1024.
static const int64_t PAGG_DEFAULT_HASH_TABLE_SZ = 1024;
hash_tbl.reset(PartitionedHashTable::create(parent->_state, parent->_block_mgr_client, 1,
NULL, 1 << (32 - NUM_PARTITIONING_BITS), PAGG_DEFAULT_HASH_TABLE_SZ));
return hash_tbl->init();
}
Status PartitionedAggregationNode::Partition::clean_up() {
if (parent->_needs_serialize && aggregated_row_stream->num_rows() != 0) {
// We need to do a lot more work in this case. This step effectively does a merge
// aggregation in this node. We need to serialize the intermediates, spill the
// intermediates and then feed them into the aggregate function's merge step.
// This is often used when the intermediate is a string type, meaning the current
// (before serialization) in-memory layout is not the on-disk block layout.
// The disk layout does not support mutable rows. We need to rewrite the stream
// into the on disk format.
// TODO: if it happens to not be a string, we could serialize in place. This is
// a future optimization since it is very unlikely to have a serialize phase
// for those UDAs.
DCHECK(parent->_serialize_stream.get() != NULL);
DCHECK(!parent->_serialize_stream->is_pinned());
DCHECK(parent->_serialize_stream->has_write_block());
const vector<AggFnEvaluator*>& evaluators = parent->_aggregate_evaluators;
// serialize and copy the spilled partition's stream into the new stream.
Status status = Status::OK();
bool failed_to_add = false;
BufferedTupleStream2* new_stream = parent->_serialize_stream.get();
PartitionedHashTable::Iterator it = hash_tbl->begin(parent->_ht_ctx.get());
while (!it.at_end()) {
Tuple* tuple = it.get_tuple();
it.next();
AggFnEvaluator::serialize(evaluators, agg_fn_ctxs, tuple);
if (UNLIKELY(!new_stream->add_row(reinterpret_cast<TupleRow*>(&tuple), &status))) {
failed_to_add = true;
break;
}
}
// Even if we can't add to new_stream, finish up processing this agg stream to make
// clean up easier (someone has to finalize this stream and we don't want to remember
// where we are).
if (failed_to_add) {
parent->cleanup_hash_tbl(agg_fn_ctxs, it);
hash_tbl->close();
hash_tbl.reset();
aggregated_row_stream->close();
RETURN_IF_ERROR(status);
return parent->_state->block_mgr2()->mem_limit_too_low_error(parent->_block_mgr_client,
parent->id());
}
DCHECK(status.ok());
aggregated_row_stream->close();
aggregated_row_stream.swap(parent->_serialize_stream);
// Recreate the serialize_stream (and reserve 1 buffer) now in preparation for
// when we need to spill again. We need to have this available before we need
// to spill to make sure it is available. This should be acquirable since we just
// freed at least one buffer from this partition's (old) aggregated_row_stream.
parent->_serialize_stream.reset(new BufferedTupleStream2(parent->_state,
*parent->_intermediate_row_desc, parent->_state->block_mgr2(),
parent->_block_mgr_client, false /* use_initial_small_buffers */,
false /* read_write */));
status = parent->_serialize_stream->init(parent->id(), parent->runtime_profile(), false);
if (!status.ok()) {
hash_tbl->close();
hash_tbl.reset();
return status;
}
DCHECK(parent->_serialize_stream->has_write_block());
}
return Status::OK();
}
Status PartitionedAggregationNode::Partition::spill() {
DCHECK(!is_closed);
DCHECK(!is_spilled());
RETURN_IF_ERROR(clean_up());
// Free the in-memory result data.
for (int i = 0; i < agg_fn_ctxs.size(); ++i) {
agg_fn_ctxs[i]->impl()->close();
}
if (agg_fn_pool.get() != NULL) {
agg_fn_pool->free_all();
agg_fn_pool.reset();
}
hash_tbl->close();
hash_tbl.reset();
// Try to switch both streams to IO-sized buffers to avoid allocating small buffers
// for spilled partition.
bool got_buffer = true;
if (aggregated_row_stream->using_small_buffers()) {
RETURN_IF_ERROR(aggregated_row_stream->switch_to_io_buffers(&got_buffer));
}
// Unpin the stream as soon as possible to increase the changes that the
// switch_to_io_buffers() call below will succeed.
DCHECK(!got_buffer || aggregated_row_stream->has_write_block())
<< aggregated_row_stream->debug_string();
RETURN_IF_ERROR(aggregated_row_stream->unpin_stream(false));
if (got_buffer && unaggregated_row_stream->using_small_buffers()) {
RETURN_IF_ERROR(unaggregated_row_stream->switch_to_io_buffers(&got_buffer));
}
if (!got_buffer) {
// We'll try again to get the buffers when the stream fills up the small buffers.
VLOG_QUERY << "Not enough memory to switch to IO-sized buffer for partition "
<< this << " of agg=" << parent->_id << " agg small buffers="
<< aggregated_row_stream->using_small_buffers()
<< " unagg small buffers="
<< unaggregated_row_stream->using_small_buffers();
VLOG_FILE << get_stack_trace();
}
COUNTER_UPDATE(parent->_num_spilled_partitions, 1);
if (parent->_num_spilled_partitions->value() == 1) {
parent->add_runtime_exec_option("Spilled");
}
return Status::OK();
}
void PartitionedAggregationNode::Partition::close(bool finalize_rows) {
if (is_closed) {
return;
}
is_closed = true;
if (aggregated_row_stream.get() != NULL) {
if (finalize_rows && hash_tbl.get() != NULL) {
// We need to walk all the rows and finalize them here so the UDA gets a chance
// to cleanup. If the hash table is gone (meaning this was spilled), the rows
// should have been finalized/serialized in spill().
parent->cleanup_hash_tbl(agg_fn_ctxs, hash_tbl->begin(parent->_ht_ctx.get()));
}
aggregated_row_stream->close();
}
if (hash_tbl.get() != NULL) {
hash_tbl->close();
}
if (unaggregated_row_stream.get() != NULL) {
unaggregated_row_stream->close();
}
for (int i = 0; i < agg_fn_ctxs.size(); ++i) {
agg_fn_ctxs[i]->impl()->close();
}
if (agg_fn_pool.get() != NULL) {
agg_fn_pool->free_all();
}
}
Tuple* PartitionedAggregationNode::construct_intermediate_tuple(
const vector<FunctionContext*>& agg_fn_ctxs, MemPool* pool,
BufferedTupleStream2* stream, Status* status) {
Tuple* intermediate_tuple = NULL;
uint8_t* buffer = NULL;
if (pool != NULL) {
DCHECK(stream == NULL && status == NULL);
intermediate_tuple = Tuple::create(_intermediate_tuple_desc->byte_size(), pool);
} else {
DCHECK(stream != NULL && status != NULL);
// Figure out how big it will be to copy the entire tuple. We need the tuple to end
// up in one block in the stream.
int size = _intermediate_tuple_desc->byte_size();
if (_contains_var_len_grouping_exprs) {
// TODO: This is likely to be too slow. The hash table could maintain this as
// it hashes.
for (int i = 0; i < _probe_expr_ctxs.size(); ++i) {
if (!_probe_expr_ctxs[i]->root()->type().is_string_type()) {
continue;
}
if (_ht_ctx->last_expr_value_null(i)) {
continue;
}
StringValue* sv = reinterpret_cast<StringValue*>(_ht_ctx->last_expr_value(i));
size += sv->len;
}
}
// Now that we know the size of the row, allocate space for it in the stream.
buffer = stream->allocate_row(size, status);
if (buffer == NULL) {
if (!status->ok() || !stream->using_small_buffers()) {
return NULL;
}
// IMPALA-2352: Make a best effort to switch to IO buffers and re-allocate.
// If switch_to_io_buffers() fails the caller of this function can try to free
// some space, e.g. through spilling, and re-attempt to allocate space for
// this row.
bool got_buffer = false;
*status = stream->switch_to_io_buffers(&got_buffer);
if (!status->ok() || !got_buffer) {
return NULL;
}
buffer = stream->allocate_row(size, status);
if (buffer == NULL) {
return NULL;
}
}
intermediate_tuple = reinterpret_cast<Tuple*>(buffer);
// TODO: remove this. we shouldn't need to zero the entire tuple.
intermediate_tuple->init(size);
buffer += _intermediate_tuple_desc->byte_size();
}
// Copy grouping values.
vector<SlotDescriptor*>::const_iterator slot_desc = _intermediate_tuple_desc->slots().begin();
for (int i = 0; i < _probe_expr_ctxs.size(); ++i, ++slot_desc) {
if (_ht_ctx->last_expr_value_null(i)) {
intermediate_tuple->set_null((*slot_desc)->null_indicator_offset());
} else {
void* src = _ht_ctx->last_expr_value(i);
void* dst = intermediate_tuple->get_slot((*slot_desc)->tuple_offset());
if (stream == NULL) {
RawValue::write(src, dst, (*slot_desc)->type(), pool);
} else {
RawValue::write(src, (*slot_desc)->type(), dst, &buffer);
}
}
}
// Initialize aggregate output.
for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++slot_desc) {
while (!(*slot_desc)->is_materialized()) {
++slot_desc;
}
AggFnEvaluator* evaluator = _aggregate_evaluators[i];
evaluator->init(agg_fn_ctxs[i], intermediate_tuple);
// Codegen specific path for min/max.
// To minimize branching on the update_tuple path, initialize the result value
// so that update_tuple doesn't have to check if the aggregation
// dst slot is null.
// TODO: remove when we don't use the irbuilder for codegen here. This optimization
// will no longer be necessary when all aggregates are implemented with the UDA
// interface.
// if ((*slot_desc)->type().type != TYPE_STRING &&
// (*slot_desc)->type().type != TYPE_VARCHAR &&
// (*slot_desc)->type().type != TYPE_TIMESTAMP &&
// (*slot_desc)->type().type != TYPE_CHAR &&
// (*slot_desc)->type().type != TYPE_DECIMAL) {
if (!(*slot_desc)->type().is_string_type()
&& !(*slot_desc)->type().is_date_type()) {
ExprValue default_value;
void* default_value_ptr = NULL;
switch (evaluator->agg_op()) {
case AggFnEvaluator::MIN:
default_value_ptr = default_value.set_to_max((*slot_desc)->type());
RawValue::write(default_value_ptr, intermediate_tuple, *slot_desc, NULL);
break;
case AggFnEvaluator::MAX:
default_value_ptr = default_value.set_to_min((*slot_desc)->type());
RawValue::write(default_value_ptr, intermediate_tuple, *slot_desc, NULL);
break;
default:
break;
}
}
}
return intermediate_tuple;
}
void PartitionedAggregationNode::update_tuple(FunctionContext** agg_fn_ctxs,
Tuple* tuple, TupleRow* row, bool is_merge) {
DCHECK(tuple != NULL || _aggregate_evaluators.empty());
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
if (is_merge) {
_aggregate_evaluators[i]->merge(agg_fn_ctxs[i], row->get_tuple(0), tuple);
} else {
_aggregate_evaluators[i]->add(agg_fn_ctxs[i], row, tuple);
}
}
}
Tuple* PartitionedAggregationNode::get_output_tuple(
const vector<FunctionContext*>& agg_fn_ctxs, Tuple* tuple, MemPool* pool) {
DCHECK(tuple != NULL || _aggregate_evaluators.empty()) << tuple;
Tuple* dst = tuple;
// if (_needs_finalize && _intermediate_tuple_id != _output_tuple_id) {
if (_needs_finalize) {
dst = Tuple::create(_output_tuple_desc->byte_size(), pool);
}
if (_needs_finalize) {
AggFnEvaluator::finalize(_aggregate_evaluators, agg_fn_ctxs, tuple, dst);
} else {
AggFnEvaluator::serialize(_aggregate_evaluators, agg_fn_ctxs, tuple);
}
// Copy grouping values from tuple to dst.
// TODO: Codegen this.
if (dst != tuple) {
int num_grouping_slots = _probe_expr_ctxs.size();
for (int i = 0; i < num_grouping_slots; ++i) {
SlotDescriptor* src_slot_desc = _intermediate_tuple_desc->slots()[i];
SlotDescriptor* dst_slot_desc = _output_tuple_desc->slots()[i];
bool src_slot_null = tuple->is_null(src_slot_desc->null_indicator_offset());
void* src_slot = NULL;
if (!src_slot_null) {
src_slot = tuple->get_slot(src_slot_desc->tuple_offset());
}
RawValue::write(src_slot, dst, dst_slot_desc, NULL);
}
}
return dst;
}
Status PartitionedAggregationNode::append_spilled_row(BufferedTupleStream2* stream, TupleRow* row) {
DCHECK(stream != NULL);
DCHECK(!stream->is_pinned());
DCHECK(stream->has_write_block());
if (LIKELY(stream->add_row(row, &_process_batch_status))) {
return Status::OK();
}
// Adding fails iff either we hit an error or haven't switched to I/O buffers.
RETURN_IF_ERROR(_process_batch_status);
while (true) {
bool got_buffer = false;
RETURN_IF_ERROR(stream->switch_to_io_buffers(&got_buffer));
if (got_buffer) {
break;
}
RETURN_IF_ERROR(spill_partition());
}
// Adding the row should succeed after the I/O buffer switch.
if (stream->add_row(row, &_process_batch_status)) {
return Status::OK();
}
DCHECK(!_process_batch_status.ok());
return _process_batch_status;
}
void PartitionedAggregationNode::debug_string(int indentation_level, stringstream* out) const {
*out << string(indentation_level * 2, ' ');
*out << "PartitionedAggregationNode("
<< "intermediate_tuple_id=" << _intermediate_tuple_id
<< " output_tuple_id=" << _output_tuple_id
<< " needs_finalize=" << _needs_finalize
<< " probe_exprs=" << Expr::debug_string(_probe_expr_ctxs)
<< " agg_exprs=" << AggFnEvaluator::debug_string(_aggregate_evaluators);
ExecNode::debug_string(indentation_level, out);
*out << ")";
}
Status PartitionedAggregationNode::create_hash_partitions(int level) {
if (level >= MAX_PARTITION_DEPTH) {
stringstream error_msg;
error_msg << "Cannot perform aggregation at hash aggregation node with id "
<< _id << '.'
<< " The input data was partitioned the maximum number of "
<< MAX_PARTITION_DEPTH << " times."
<< " This could mean there is significant skew in the data or the memory limit is"
<< " set too low.";
return _state->set_mem_limit_exceeded(error_msg.str());
}
_ht_ctx->set_level(level);
DCHECK(_hash_partitions.empty());
for (int i = 0; i < PARTITION_FANOUT; ++i) {
Partition* new_partition = new Partition(this, level);
DCHECK(new_partition != NULL);
_hash_partitions.push_back(_partition_pool->add(new_partition));
RETURN_IF_ERROR(new_partition->init_streams());
}
DCHECK_GT(_state->block_mgr2()->num_reserved_buffers_remaining(_block_mgr_client), 0);
// Now that all the streams are reserved (meaning we have enough memory to execute
// the algorithm), allocate the hash tables. These can fail and we can still continue.
for (int i = 0; i < PARTITION_FANOUT; ++i) {
if (!_hash_partitions[i]->init_hash_table()) {
RETURN_IF_ERROR(_hash_partitions[i]->spill());
}
}
COUNTER_UPDATE(_partitions_created, PARTITION_FANOUT);
// COUNTER_SET(_max_partition_level, level);
return Status::OK();
}
Status PartitionedAggregationNode::check_and_resize_hash_partitions(int num_rows,
PartitionedHashTableCtx* ht_ctx) {
for (int i = 0; i < PARTITION_FANOUT; ++i) {
Partition* partition = _hash_partitions[i];
while (!partition->is_spilled()) {
{
SCOPED_TIMER(_ht_resize_timer);
if (partition->hash_tbl->check_and_resize(num_rows, ht_ctx)) {
break;
}
}
// There was not enough memory for the resize. Spill a partition and retry.
RETURN_IF_ERROR(spill_partition());
}
}
return Status::OK();
}
int64_t PartitionedAggregationNode::largest_spilled_partition() const {
int64_t max_rows = 0;
for (int i = 0; i < _hash_partitions.size(); ++i) {
Partition* partition = _hash_partitions[i];
if (partition->is_closed || !partition->is_spilled()) {
continue;
}
int64_t rows = partition->aggregated_row_stream->num_rows() +
partition->unaggregated_row_stream->num_rows();
if (rows > max_rows) {
max_rows = rows;
}
}
return max_rows;
}
Status PartitionedAggregationNode::next_partition() {
DCHECK(_output_partition == NULL);
// Keep looping until we get to a partition that fits in memory.
Partition* partition = NULL;
while (true) {
partition = NULL;
// First return partitions that are fully aggregated (and in memory).
if (!_aggregated_partitions.empty()) {
partition = _aggregated_partitions.front();
DCHECK(!partition->is_spilled());
_aggregated_partitions.pop_front();
break;
}
if (partition == NULL) {
DCHECK(!_spilled_partitions.empty());
DCHECK_EQ(_state->block_mgr2()->num_pinned_buffers(_block_mgr_client),
_needs_serialize ? 1 : 0);
// TODO: we can probably do better than just picking the first partition. We
// can base this on the amount written to disk, etc.
partition = _spilled_partitions.front();
DCHECK(partition->is_spilled());
// Create the new hash partitions to repartition into.
// TODO: we don't need to repartition here. We are now working on 1 / FANOUT
// of the input so it's reasonably likely it can fit. We should look at this
// partitions size and just do the aggregation if it fits in memory.
RETURN_IF_ERROR(create_hash_partitions(partition->level + 1));
COUNTER_UPDATE(_num_repartitions, 1);
// Rows in this partition could have been spilled into two streams, depending
// on if it is an aggregated intermediate, or an unaggregated row.
// Note: we must process the aggregated rows first to save a hash table lookup
// in process_batch().
RETURN_IF_ERROR(process_stream<true>(partition->aggregated_row_stream.get()));
RETURN_IF_ERROR(process_stream<false>(partition->unaggregated_row_stream.get()));
COUNTER_UPDATE(_num_row_repartitioned, partition->aggregated_row_stream->num_rows());
COUNTER_UPDATE(_num_row_repartitioned, partition->unaggregated_row_stream->num_rows());
partition->close(false);
_spilled_partitions.pop_front();
// Done processing this partition. Move the new partitions into
// _spilled_partitions/_aggregated_partitions.
int64_t num_input_rows = partition->aggregated_row_stream->num_rows() +
partition->unaggregated_row_stream->num_rows();
// Check if there was any reduction in the size of partitions after repartitioning.
int64_t largest_partition = largest_spilled_partition();
DCHECK_GE(num_input_rows, largest_partition) << "Cannot have a partition with "
"more rows than the input";
if (num_input_rows == largest_partition) {
// Status status = Status::MemTrackerExceeded();
// status.AddDetail(Substitute("Cannot perform aggregation at node with id $0. "
// "Repartitioning did not reduce the size of a spilled partition. "
// "Repartitioning level $1. Number of rows $2.",
// _id, partition->level + 1, num_input_rows));
// _state->SetMemTrackerExceeded();
stringstream error_msg;
error_msg << "Cannot perform aggregation at node with id " << _id << ". "
<< "Repartitioning did not reduce the size of a spilled partition. "
<< "Repartitioning level " << partition->level + 1
<< ". Number of rows " << num_input_rows << " .";
return Status::MemoryLimitExceeded(error_msg.str());
}
RETURN_IF_ERROR(move_hash_partitions(num_input_rows));
}
}
DCHECK(partition->hash_tbl.get() != NULL);
DCHECK(partition->aggregated_row_stream->is_pinned());
_output_partition = partition;
_output_iterator = _output_partition->hash_tbl->begin(_ht_ctx.get());
COUNTER_UPDATE(_num_hash_buckets, _output_partition->hash_tbl->num_buckets());
return Status::OK();
}
template<bool AGGREGATED_ROWS>
Status PartitionedAggregationNode::process_stream(BufferedTupleStream2* input_stream) {
if (input_stream->num_rows() > 0) {
while (true) {
bool got_buffer = false;
RETURN_IF_ERROR(input_stream->prepare_for_read(true, &got_buffer));
if (got_buffer) {
break;
}
// Did not have a buffer to read the input stream. Spill and try again.
RETURN_IF_ERROR(spill_partition());
}
bool eos = false;
RowBatch batch(AGGREGATED_ROWS ? *_intermediate_row_desc : _children[0]->row_desc(),
_state->batch_size(), mem_tracker());
do {
RETURN_IF_ERROR(input_stream->get_next(&batch, &eos));
RETURN_IF_ERROR(process_batch<AGGREGATED_ROWS>(&batch, _ht_ctx.get()));
RETURN_IF_ERROR(_state->query_status());
// free_local_allocations();
batch.reset();
} while (!eos);
}
input_stream->close();
return Status::OK();
}
Status PartitionedAggregationNode::spill_partition() {
int64_t max_freed_mem = 0;
int partition_idx = -1;
// Iterate over the partitions and pick the largest partition that is not spilled.
for (int i = 0; i < _hash_partitions.size(); ++i) {
if (_hash_partitions[i]->is_closed) {
continue;
}
if (_hash_partitions[i]->is_spilled()) {
continue;
}
// TODO: In PHJ the bytes_in_mem() call also calculates the mem used by the
// _write_block, why do we ignore it here?
int64_t mem = _hash_partitions[i]->aggregated_row_stream->bytes_in_mem(true);
mem += _hash_partitions[i]->hash_tbl->byte_size();
mem += _hash_partitions[i]->agg_fn_pool->total_reserved_bytes();
if (mem > max_freed_mem) {
max_freed_mem = mem;
partition_idx = i;
}
}
if (partition_idx == -1) {
// Could not find a partition to spill. This means the mem limit was just too low.
return _state->block_mgr2()->mem_limit_too_low_error(_block_mgr_client, id());
}
return _hash_partitions[partition_idx]->spill();
}
Status PartitionedAggregationNode::move_hash_partitions(int64_t num_input_rows) {
DCHECK(!_hash_partitions.empty());
stringstream ss;
ss << "PA(node_id=" << id() << ") partitioned(level="
<< _hash_partitions[0]->level << ") "
<< num_input_rows << " rows into:" << std::endl;
for (int i = 0; i < _hash_partitions.size(); ++i) {
Partition* partition = _hash_partitions[i];
int64_t aggregated_rows = partition->aggregated_row_stream->num_rows();
int64_t unaggregated_rows = partition->unaggregated_row_stream->num_rows();
int64_t total_rows = aggregated_rows + unaggregated_rows;
double percent = static_cast<double>(total_rows * 100) / num_input_rows;
ss << " " << i << " " << (partition->is_spilled() ? "spilled" : "not spilled")
<< " (fraction=" << std::fixed << std::setprecision(2) << percent << "%)" << std::endl
<< " #aggregated rows:" << aggregated_rows << std::endl
<< " #unaggregated rows: " << unaggregated_rows << std::endl;
// TODO: update counters to support doubles.
// COUNTER_SET(_largest_partition_percent, static_cast<int64_t>(percent));
if (total_rows == 0) {
partition->close(false);
} else if (partition->is_spilled()) {
DCHECK(partition->hash_tbl.get() == NULL);
// We need to unpin all the spilled partitions to make room to allocate new
// _hash_partitions when we repartition the spilled partitions.
// TODO: we only need to do this when we have memory pressure. This might be
// okay though since the block mgr should only write these to disk if there
// is memory pressure.
RETURN_IF_ERROR(partition->aggregated_row_stream->unpin_stream(true));
RETURN_IF_ERROR(partition->unaggregated_row_stream->unpin_stream(true));
// Push new created partitions at the front. This means a depth first walk
// (more finely partitioned partitions are processed first). This allows us
// to delete blocks earlier and bottom out the recursion earlier.
_spilled_partitions.push_front(partition);
} else {
_aggregated_partitions.push_back(partition);
}
}
VLOG(2) << ss.str();
_hash_partitions.clear();
return Status::OK();
}
void PartitionedAggregationNode::close_partitions() {
for (int i = 0; i < _hash_partitions.size(); ++i) {
_hash_partitions[i]->close(true);
}
for (list<Partition*>::iterator it = _aggregated_partitions.begin();
it != _aggregated_partitions.end(); ++it) {
(*it)->close(true);
}
for (list<Partition*>::iterator it = _spilled_partitions.begin();
it != _spilled_partitions.end(); ++it) {
(*it)->close(true);
}
_aggregated_partitions.clear();
_spilled_partitions.clear();
_hash_partitions.clear();
_partition_pool->clear();
}
#if 0
// Status PartitionedAggregationNode::QueryMaintenance(RuntimeState* state) {
// for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
// ExprContext::free_local_allocations(_aggregate_evaluators[i]->input_expr_ctxs());
// }
// ExprContext::free_local_allocations(_agg_fn_ctxs);
// for (int i = 0; i < _hash_partitions.size(); ++i) {
// ExprContext::free_local_allocations(_hash_partitions[i]->agg_fn_ctxs);
// }
// return ExecNode::QueryMaintenance(state);
// }
// IR Generation for updating a single aggregation slot. Signature is:
// void UpdateSlot(FunctionContext* fn_ctx, AggTuple* agg_tuple, char** row)
//
// The IR for sum(double_col) is:
// define void @UpdateSlot(%"class.doris_udf::FunctionContext"* %fn_ctx,
// { i8, double }* %agg_tuple,
// %"class.doris::TupleRow"* %row) #20 {
// entry:
// %src = call { i8, double } @GetSlotRef(%"class.doris::ExprContext"* inttoptr
// (i64 128241264 to %"class.doris::ExprContext"*), %"class.doris::TupleRow"* %row)
// %0 = extractvalue { i8, double } %src, 0
// %is_null = trunc i8 %0 to i1
// br i1 %is_null, label %ret, label %src_not_null
//
// src_not_null: ; preds = %entry
// %dst_slot_ptr = getelementptr inbounds { i8, double }* %agg_tuple, i32 0, i32 1
// call void @SetNotNull({ i8, double }* %agg_tuple)
// %dst_val = load double* %dst_slot_ptr
// %val = extractvalue { i8, double } %src, 1
// %1 = fadd double %dst_val, %val
// store double %1, double* %dst_slot_ptr
// br label %ret
//
// ret: ; preds = %src_not_null, %entry
// ret void
// }
//
// The IR for ndv(double_col) is:
// define void @UpdateSlot(%"class.doris_udf::FunctionContext"* %fn_ctx,
// { i8, %"struct.doris::StringValue" }* %agg_tuple,
// %"class.doris::TupleRow"* %row) #20 {
// entry:
// %dst_lowered_ptr = alloca { i64, i8* }
// %src_lowered_ptr = alloca { i8, double }
// %src = call { i8, double } @GetSlotRef(%"class.doris::ExprContext"* inttoptr
// (i64 120530832 to %"class.doris::ExprContext"*), %"class.doris::TupleRow"* %row)
// %0 = extractvalue { i8, double } %src, 0
// %is_null = trunc i8 %0 to i1
// br i1 %is_null, label %ret, label %src_not_null
//
// src_not_null: ; preds = %entry
// %dst_slot_ptr = getelementptr inbounds
// { i8, %"struct.doris::StringValue" }* %agg_tuple, i32 0, i32 1
// call void @SetNotNull({ i8, %"struct.doris::StringValue" }* %agg_tuple)
// %dst_val = load %"struct.doris::StringValue"* %dst_slot_ptr
// store { i8, double } %src, { i8, double }* %src_lowered_ptr
// %src_unlowered_ptr = bitcast { i8, double }* %src_lowered_ptr
// to %"struct.doris_udf::DoubleVal"*
// %ptr = extractvalue %"struct.doris::StringValue" %dst_val, 0
// %dst_stringval = insertvalue { i64, i8* } zeroinitializer, i8* %ptr, 1
// %len = extractvalue %"struct.doris::StringValue" %dst_val, 1
// %1 = extractvalue { i64, i8* } %dst_stringval, 0
// %2 = zext i32 %len to i64
// %3 = shl i64 %2, 32
// %4 = and i64 %1, 4294967295
// %5 = or i64 %4, %3
// %dst_stringval1 = insertvalue { i64, i8* } %dst_stringval, i64 %5, 0
// store { i64, i8* } %dst_stringval1, { i64, i8* }* %dst_lowered_ptr
// %dst_unlowered_ptr = bitcast { i64, i8* }* %dst_lowered_ptr
// to %"struct.doris_udf::StringVal"*
// call void @HllUpdate(%"class.doris_udf::FunctionContext"* %fn_ctx,
// %"struct.doris_udf::DoubleVal"* %src_unlowered_ptr,
// %"struct.doris_udf::StringVal"* %dst_unlowered_ptr)
// %anyval_result = load { i64, i8* }* %dst_lowered_ptr
// %6 = extractvalue { i64, i8* } %anyval_result, 1
// %7 = insertvalue %"struct.doris::StringValue" zeroinitializer, i8* %6, 0
// %8 = extractvalue { i64, i8* } %anyval_result, 0
// %9 = ashr i64 %8, 32
// %10 = trunc i64 %9 to i32
// %11 = insertvalue %"struct.doris::StringValue" %7, i32 %10, 1
// store %"struct.doris::StringValue" %11, %"struct.doris::StringValue"* %dst_slot_ptr
// br label %ret
//
// ret: ; preds = %src_not_null, %entry
// ret void
// }
llvm::Function* PartitionedAggregationNode::codegen_update_slot(
AggFnEvaluator* evaluator, SlotDescriptor* slot_desc) {
DCHECK(slot_desc->is_materialized());
LlvmCodeGen* codegen = NULL;
if (!_state->get_codegen(&codegen).ok()) {
return NULL;
}
DCHECK_EQ(evaluator->input_expr_ctxs().size(), 1);
ExprContext* input_expr_ctx = evaluator->input_expr_ctxs()[0];
Expr* input_expr = input_expr_ctx->root();
// TODO: implement timestamp
// if (input_expr->type().type == TYPE_TIMESTAMP &&
// evaluator->agg_op() != AggFnEvaluator::AVG) {
// return NULL;
// }
Function* agg_expr_fn = NULL;
Status status = input_expr->get_codegend_compute_fn(_state, &agg_expr_fn);
if (!status.ok()) {
VLOG_QUERY << "Could not codegen UpdateSlot(): " << status.get_error_msg();
return NULL;
}
DCHECK(agg_expr_fn != NULL);
PointerType* fn_ctx_type =
codegen->get_ptr_type(FunctionContextImpl::_s_llvm_functioncontext_name);
StructType* tuple_struct = _intermediate_tuple_desc->generate_llvm_struct(codegen);
if (tuple_struct == NULL) return NULL; // Could not generate tuple struct
PointerType* tuple_ptr_type = PointerType::get(tuple_struct, 0);
PointerType* tuple_row_ptr_type = codegen->get_ptr_type(TupleRow::_s_llvm_class_name);
// Create UpdateSlot prototype
LlvmCodeGen::FnPrototype prototype(codegen, "UpdateSlot", codegen->void_type());
prototype.add_argument(LlvmCodeGen::NamedVariable("fn_ctx", fn_ctx_type));
prototype.add_argument(LlvmCodeGen::NamedVariable("agg_tuple", tuple_ptr_type));
prototype.add_argument(LlvmCodeGen::NamedVariable("row", tuple_row_ptr_type));
LlvmCodeGen::LlvmBuilder builder(codegen->context());
Value* args[3];
Function* fn = prototype.generate_prototype(&builder, &args[0]);
Value* fn_ctx_arg = args[0];
Value* agg_tuple_arg = args[1];
Value* row_arg = args[2];
BasicBlock* src_not_null_block =
BasicBlock::create(codegen->context(), "src_not_null", fn);
BasicBlock* ret_block = BasicBlock::create(codegen->context(), "ret", fn);
// Call expr function to get src slot value
Value* expr_ctx = codegen->cast_ptr_to_llvm_ptr(
codegen->get_ptr_type(ExprContext::_s_llvm_class_name), input_expr_ctx);
Value* agg_expr_fn_args[] = { expr_ctx, row_arg };
CodegenAnyVal src = CodegenAnyVal::create_call_wrapped(
codegen, &builder, input_expr->type(), agg_expr_fn, agg_expr_fn_args, "src");
Value* src_is_null = src.get_is_null();
builder.create_cond_br(src_is_null, ret_block, src_not_null_block);
// Src slot is not null, update dst_slot
builder.set_insert_point(src_not_null_block);
Value* dst_ptr =
builder.create_struct_gep(agg_tuple_arg, slot_desc->field_idx(), "dst_slot_ptr");
Value* result = NULL;
if (slot_desc->is_nullable()) {
// Dst is NULL, just update dst slot to src slot and clear null bit
Function* clear_null_fn = slot_desc->CodegenUpdateNull(codegen, tuple_struct, false);
builder.CreateCall(clear_null_fn, agg_tuple_arg);
}
// Update the slot
Value* dst_value = builder.CreateLoad(dst_ptr, "dst_val");
switch (evaluator->agg_op()) {
case AggFnEvaluator::COUNT:
if (evaluator->is_merge()) {
result = builder.CreateAdd(dst_value, src.GetVal(), "count_sum");
} else {
result = builder.CreateAdd(dst_value,
codegen->get_int_constant(TYPE_BIGINT, 1), "count_inc");
}
break;
case AggFnEvaluator::MIN: {
Function* min_fn = codegen->CodegenMinMax(slot_desc->type(), true);
Value* min_args[] = { dst_value, src.GetVal() };
result = builder.CreateCall(min_fn, min_args, "min_value");
break;
}
case AggFnEvaluator::MAX: {
Function* max_fn = codegen->CodegenMinMax(slot_desc->type(), false);
Value* max_args[] = { dst_value, src.GetVal() };
result = builder.CreateCall(max_fn, max_args, "max_value");
break;
}
case AggFnEvaluator::SUM:
if (slot_desc->type().type != TYPE_DECIMAL && slot_desc->type().type != TYPE_DECIMALV2) {
if (slot_desc->type().type == TYPE_FLOAT ||
slot_desc->type().type == TYPE_DOUBLE) {
result = builder.CreateFAdd(dst_value, src.GetVal());
} else {
result = builder.CreateAdd(dst_value, src.GetVal());
}
break;
}
DCHECK(slot_desc->type().type == TYPE_DECIMAL || slot_desc->type().type == TYPE_DECIMALV2);
// Fall through to xcompiled case
case AggFnEvaluator::AVG:
case AggFnEvaluator::NDV: {
// Get xcompiled update/merge function from IR module
const string& symbol = evaluator->is_merge() ?
evaluator->merge_symbol() : evaluator->update_symbol();
Function* ir_fn = codegen->module()->getFunction(symbol);
DCHECK(ir_fn != NULL);
// Create pointer to src to pass to ir_fn. We must use the unlowered type.
Value* src_lowered_ptr = codegen->CreateEntryBlockAlloca(
fn, LlvmCodeGen::NamedVariable("src_lowered_ptr", src.value()->getType()));
builder.CreateStore(src.value(), src_lowered_ptr);
Type* unlowered_ptr_type =
CodegenAnyVal::GetUnloweredPtrType(codegen, input_expr->type());
Value* src_unlowered_ptr =
builder.CreateBitCast(src_lowered_ptr, unlowered_ptr_type, "src_unlowered_ptr");
// Create intermediate argument 'dst' from 'dst_value'
const ColumnType& dst_type = evaluator->intermediate_type();
CodegenAnyVal dst = CodegenAnyVal::GetNonNullVal(
codegen, &builder, dst_type, "dst");
dst.SetFromRawValue(dst_value);
// Create pointer to dst to pass to ir_fn. We must use the unlowered type.
Value* dst_lowered_ptr = codegen->CreateEntryBlockAlloca(
fn, LlvmCodeGen::NamedVariable("dst_lowered_ptr", dst.value()->getType()));
builder.CreateStore(dst.value(), dst_lowered_ptr);
unlowered_ptr_type = CodegenAnyVal::GetUnloweredPtrType(codegen, dst_type);
Value* dst_unlowered_ptr =
builder.CreateBitCast(dst_lowered_ptr, unlowered_ptr_type, "dst_unlowered_ptr");
// Call 'ir_fn'
builder.CreateCall3(ir_fn, fn_ctx_arg, src_unlowered_ptr, dst_unlowered_ptr);
// Convert StringVal intermediate 'dst_arg' back to StringValue
Value* anyval_result = builder.CreateLoad(dst_lowered_ptr, "anyval_result");
result = CodegenAnyVal(codegen, &builder, dst_type, anyval_result).ToNativeValue();
break;
}
default:
DCHECK(false) << "bad aggregate operator: " << evaluator->agg_op();
}
builder.CreateStore(result, dst_ptr);
builder.CreateBr(ret_block);
builder.SetInsertPoint(ret_block);
builder.CreateRetVoid();
return codegen->FinalizeFunction(fn);
}
// IR codegen for the update_tuple loop. This loop is query specific and based on the
// aggregate functions. The function signature must match the non- codegen'd update_tuple
// exactly.
// For the query:
// select count(*), count(int_col), sum(double_col) the IR looks like:
//
// ; Function Attrs: alwaysinline
// define void @update_tuple(%"class.doris::PartitionedAggregationNode"* %this_ptr,
// %"class.doris_udf::FunctionContext"** %agg_fn_ctxs,
// %"class.doris::Tuple"* %tuple,
// %"class.doris::TupleRow"* %row,
// i1 %is_merge) #20 {
// entry:
// %tuple1 = bitcast %"class.doris::Tuple"* %tuple to { i8, i64, i64, double }*
// %src_slot = getelementptr inbounds { i8, i64, i64, double }* %tuple1, i32 0, i32 1
// %count_star_val = load i64* %src_slot
// %count_star_inc = add i64 %count_star_val, 1
// store i64 %count_star_inc, i64* %src_slot
// %0 = getelementptr %"class.doris_udf::FunctionContext"** %agg_fn_ctxs, i32 1
// %fn_ctx = load %"class.doris_udf::FunctionContext"** %0
// call void @UpdateSlot(%"class.doris_udf::FunctionContext"* %fn_ctx,
// { i8, i64, i64, double }* %tuple1,
// %"class.doris::TupleRow"* %row)
// %1 = getelementptr %"class.doris_udf::FunctionContext"** %agg_fn_ctxs, i32 2
// %fn_ctx2 = load %"class.doris_udf::FunctionContext"** %1
// call void @UpdateSlot5(%"class.doris_udf::FunctionContext"* %fn_ctx2,
// { i8, i64, i64, double }* %tuple1,
// %"class.doris::TupleRow"* %row)
// ret void
// }
Function* PartitionedAggregationNode::codegen_update_tuple() {
LlvmCodeGen* codegen = NULL;
if (!_state->get_codegen(&codegen).ok()) {
return NULL;
}
SCOPED_TIMER(codegen->codegen_timer());
int j = _probe_expr_ctxs.size();
for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++j) {
// skip non-materialized slots; we don't have evaluators instantiated for those
while (!_intermediate_tuple_desc->slots()[j]->is_materialized()) {
DCHECK_LT(j, _intermediate_tuple_desc->slots().size() - 1);
++j;
}
SlotDescriptor* slot_desc = _intermediate_tuple_desc->slots()[j];
AggFnEvaluator* evaluator = _aggregate_evaluators[i];
// Don't codegen things that aren't builtins (for now)
if (!evaluator->is_builtin()) {
return NULL;
}
bool supported = true;
AggFnEvaluator::AggregationOp op = evaluator->agg_op();
PrimitiveType type = slot_desc->type().type;
// Char and timestamp intermediates aren't supported
if (type == TYPE_TIMESTAMP || type == TYPE_CHAR) {
supported = false;
}
// Only AVG and NDV support string intermediates
if ((type == TYPE_STRING || type == TYPE_VARCHAR) &&
!(op == AggFnEvaluator::AVG || op == AggFnEvaluator::NDV)) {
supported = false;
}
// Only SUM, AVG, and NDV support decimal intermediates
if (type == TYPE_DECIMAL &&
!(op == AggFnEvaluator::SUM || op == AggFnEvaluator::AVG ||
op == AggFnEvaluator::NDV)) {
supported = false;
}
if (type == TYPE_DECIMALV2 &&
!(op == AggFnEvaluator::SUM || op == AggFnEvaluator::AVG ||
op == AggFnEvaluator::NDV)) {
supported = false;
}
if (!supported) {
VLOG_QUERY << "Could not codegen update_tuple because intermediate type "
<< slot_desc->type()
<< " is not yet supported for aggregate function \""
<< evaluator->fn_name() << "()\"";
return NULL;
}
}
if (_intermediate_tuple_desc->generate_llvm_struct(codegen) == NULL) {
VLOG_QUERY << "Could not codegen update_tuple because we could"
<< "not generate a matching llvm struct for the intermediate tuple.";
return NULL;
}
// Get the types to match the update_tuple signature
Type* agg_node_type = codegen->get_type(PartitionedAggregationNode::_s_llvm_class_name);
Type* fn_ctx_type = codegen->get_type(FunctionContextImpl::_s_llvm_functioncontext_name);
Type* tuple_type = codegen->get_type(Tuple::_s_llvm_class_name);
Type* tuple_row_type = codegen->get_type(TupleRow::_s_llvm_class_name);
PointerType* agg_node_ptr_type = agg_node_type->getPointerTo();
PointerType* fn_ctx_ptr_ptr_type = fn_ctx_type->getPointerTo()->getPointerTo();
PointerType* tuple_ptr_type = tuple_type->getPointerTo();
PointerType* tuple_row_ptr_type = tuple_row_type->getPointerTo();
StructType* tuple_struct = _intermediate_tuple_desc->generate_llvm_struct(codegen);
PointerType* tuple_ptr = PointerType::get(tuple_struct, 0);
LlvmCodeGen::FnPrototype prototype(codegen, "update_tuple", codegen->void_type());
prototype.add_argument(LlvmCodeGen::NamedVariable("this_ptr", agg_node_ptr_type));
prototype.add_argument(LlvmCodeGen::NamedVariable("agg_fn_ctxs", fn_ctx_ptr_ptr_type));
prototype.add_argument(LlvmCodeGen::NamedVariable("tuple", tuple_ptr_type));
prototype.add_argument(LlvmCodeGen::NamedVariable("row", tuple_row_ptr_type));
prototype.add_argument(LlvmCodeGen::NamedVariable("is_merge", codegen->boolean_type()));
LlvmCodeGen::LlvmBuilder builder(codegen->context());
Value* args[5];
Function* fn = prototype.generate_prototype(&builder, &args[0]);
Value* agg_fn_ctxs_arg = args[1];
Value* tuple_arg = args[2];
Value* row_arg = args[3];
// Cast the parameter types to the internal llvm runtime types.
// TODO: get rid of this by using right type in function signature
tuple_arg = builder.CreateBitCast(tuple_arg, tuple_ptr, "tuple");
// Loop over each expr and generate the IR for that slot. If the expr is not
// count(*), generate a helper IR function to update the slot and call that.
j = _probe_expr_ctxs.size();
for (int i = 0; i < _aggregate_evaluators.size(); ++i, ++j) {
// skip non-materialized slots; we don't have evaluators instantiated for those
while (!_intermediate_tuple_desc->slots()[j]->is_materialized()) {
DCHECK_LT(j, _intermediate_tuple_desc->slots().size() - 1);
++j;
}
SlotDescriptor* slot_desc = _intermediate_tuple_desc->slots()[j];
AggFnEvaluator* evaluator = _aggregate_evaluators[i];
if (evaluator->is_count_star()) {
// TODO: we should be able to hoist this up to the loop over the batch and just
// increment the slot by the number of rows in the batch.
int field_idx = slot_desc->field_idx();
Value* const_one = codegen->get_int_constant(TYPE_BIGINT, 1);
Value* slot_ptr = builder.create_struct_gep(tuple_arg, field_idx, "src_slot");
Value* slot_loaded = builder.CreateLoad(slot_ptr, "count_star_val");
Value* count_inc = builder.CreateAdd(slot_loaded, const_one, "count_star_inc");
builder.CreateStore(count_inc, slot_ptr);
} else {
Function* update_slot_fn = codegen_update_slot(evaluator, slot_desc);
if (update_slot_fn == NULL) return NULL;
Value* fn_ctx_ptr = builder.CreateConstGEP1_32(agg_fn_ctxs_arg, i);
Value* fn_ctx = builder.CreateLoad(fn_ctx_ptr, "fn_ctx");
builder.CreateCall3(update_slot_fn, fn_ctx, tuple_arg, row_arg);
}
}
builder.CreateRetVoid();
// codegen_process_batch() does the final optimizations.
return codegen->FinalizeFunction(fn);
}
Function* PartitionedAggregationNode::codegen_process_batch() {
LlvmCodeGen* codegen = NULL;
if (!_state->get_codegen(&codegen).ok()) {
return NULL;
}
SCOPED_TIMER(codegen->codegen_timer());
Function* update_tuple_fn = codegen_update_tuple();
if (update_tuple_fn == NULL) {
return NULL;
}
// Get the cross compiled update row batch function
IRFunction::Type ir_fn = (!_probe_expr_ctxs.empty() ?
IRFunction::PART_AGG_NODE_PROCESS_BATCH_FALSE :
IRFunction::PART_AGG_NODE_PROCESS_BATCH_NO_GROUPING);
Function* process_batch_fn = codegen->get_function(ir_fn);
DCHECK(process_batch_fn != NULL);
int replaced = 0;
if (!_probe_expr_ctxs.empty()) {
// Aggregation w/o grouping does not use a hash table.
// Codegen for hash
// The codegen'd process_batch function is only used in open() with _level = 0,
// so don't use murmur hash
Function* hash_fn = _ht_ctx->codegen_hash_current_row(_state, /* use murmur */ false);
if (hash_fn == NULL) {
return NULL;
}
// Codegen PartitionedHashTable::Equals
Function* equals_fn = _ht_ctx->codegen_equals(_state);
if (equals_fn == NULL) {
return NULL;
}
// Codegen for evaluating probe rows
Function* eval_probe_row_fn = _ht_ctx->codegen_eval_row(_state, false);
if (eval_probe_row_fn == NULL) {
return NULL;
}
// Replace call sites
process_batch_fn = codegen->replace_call_sites(process_batch_fn, false,
eval_probe_row_fn, "EvalProbeRow", &replaced);
DCHECK_EQ(replaced, 1);
process_batch_fn = codegen->replace_call_sites(process_batch_fn, true,
hash_fn, "HashCurrentRow", &replaced);
DCHECK_EQ(replaced, 1);
process_batch_fn = codegen->replace_call_sites(process_batch_fn, true,
equals_fn, "Equals", &replaced);
DCHECK_EQ(replaced, 1);
}
process_batch_fn = codegen->replace_call_sites(process_batch_fn, false,
update_tuple_fn, "update_tuple", &replaced);
DCHECK_GE(replaced, 1);
DCHECK(process_batch_fn != NULL);
return codegen->optimize_function_with_exprs(process_batch_fn);
}
#endif
}