Files
doris/be/test/runtime/mem_limit_test.cpp
HuangWei 10f822eb43 [MemTracker] make all MemTrackers shared (#4135)
We make all MemTrackers shared, in order to show MemTracker real-time consumptions on the web.
As follows:
1. nearly all MemTracker raw ptr -> shared_ptr
2. Use CreateTracker() to create new MemTracker(in order to add itself to its parent)
3. RowBatch & MemPool still use raw ptrs of MemTracker, it's easy to ensure RowBatch & MemPool destructor exec 
     before MemTracker's destructor. So we don't change these code.
4. MemTracker can use RuntimeProfile's counter to calc consumption. So RuntimeProfile's counter need to be shared 
    too. We add a shared counter pool to store the shared counter, don't change other counters of RuntimeProfile.
Note that, this PR doesn't change the MemTracker tree structure. So there still have some orphan trackers, e.g. RowBlockV2's MemTracker. If you find some shared MemTrackers are little memory consumption & too time-consuming, you could make them be the orphan, then it's fine to use the raw ptr.
2020-07-31 21:57:21 +08:00

267 lines
8.9 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "runtime/mem_tracker.h"
#include <gtest/gtest.h>
#include "util/metrics.h"
#include "util/logging.h"
namespace doris {
TEST(MemTestTest, SingleTrackerNoLimit) {
MemTracker t(-1);
EXPECT_FALSE(t.has_limit());
t.Consume(10);
EXPECT_EQ(t.consumption(), 10);
t.Consume(10);
EXPECT_EQ(t.consumption(), 20);
t.Release(15);
EXPECT_EQ(t.consumption(), 5);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
}
TEST(MemTestTest, SingleTrackerWithLimit) {
MemTracker t(11);
EXPECT_TRUE(t.has_limit());
t.Consume(10);
EXPECT_EQ(t.consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
t.Consume(10);
EXPECT_EQ(t.consumption(), 20);
EXPECT_TRUE(t.LimitExceeded(MemLimit::HARD));
t.Release(15);
EXPECT_EQ(t.consumption(), 5);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
}
#if 0
TEST(MemTestTest, ConsumptionMetric) {
TMetricDef md;
md.__set_key("test");
md.__set_units(TUnit::BYTES);
md.__set_kind(TMetricKind::GAUGE);
UIntGauge metric(md, 0);
EXPECT_EQ(metric.value(), 0);
MemTracker t(&metric, 100, -1, "");
EXPECT_TRUE(t.has_limit());
EXPECT_EQ(t.consumption(), 0);
// Consume()/Release() arguments have no effect
t.Consume(150);
EXPECT_EQ(t.consumption(), 0);
EXPECT_EQ(t.peak_consumption(), 0);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
t.Release(5);
EXPECT_EQ(t.consumption(), 0);
EXPECT_EQ(t.peak_consumption(), 0);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
metric.Increment(10);
// _consumption is only updated with _consumption_metric after calls to
// Consume()/Release() with a non-zero value
t.Consume(1);
EXPECT_EQ(t.consumption(), 10);
EXPECT_EQ(t.peak_consumption(), 10);
metric.Increment(-5);
t.Consume(-1);
EXPECT_EQ(t.consumption(), 5);
EXPECT_EQ(t.peak_consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
metric.Increment(150);
t.Consume(1);
EXPECT_EQ(t.consumption(), 155);
EXPECT_EQ(t.peak_consumption(), 155);
EXPECT_TRUE(t.LimitExceeded(MemLimit::HARD));
metric.Increment(-150);
t.Consume(-1);
EXPECT_EQ(t.consumption(), 5);
EXPECT_EQ(t.peak_consumption(), 155);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// _consumption is not updated when Consume()/Release() is called with a zero value
metric.Increment(10);
t.Consume(0);
EXPECT_EQ(t.consumption(), 5);
EXPECT_EQ(t.peak_consumption(), 155);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
}
#endif // #end #if 0
TEST(MemTestTest, TrackerHierarchy) {
auto p = std::make_shared<MemTracker>(100);
auto c1= std::make_shared<MemTracker>(80, "", p);
auto c2= std::make_shared<MemTracker>(50, "", p);
// everything below limits
c1->Consume(60);
EXPECT_EQ(c1->consumption(), 60);
EXPECT_FALSE(c1->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2->consumption(), 0);
EXPECT_FALSE(c2->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c2->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p->consumption(), 60);
EXPECT_FALSE(p->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(p->AnyLimitExceeded(MemLimit::HARD));
// p goes over limit
c2->Consume(50);
EXPECT_EQ(c1->consumption(), 60);
EXPECT_FALSE(c1->LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(c1->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2->consumption(), 50);
EXPECT_FALSE(c2->LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(c2->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p->consumption(), 110);
EXPECT_TRUE(p->LimitExceeded(MemLimit::HARD));
// c2 goes over limit, p drops below limit
c1->Release(20);
c2->Consume(10);
EXPECT_EQ(c1->consumption(), 40);
EXPECT_FALSE(c1->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2->consumption(), 60);
EXPECT_TRUE(c2->LimitExceeded(MemLimit::HARD));
EXPECT_TRUE(c2->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p->consumption(), 100);
EXPECT_FALSE(p->LimitExceeded(MemLimit::HARD));
}
TEST(MemTestTest, TrackerHierarchyTryConsume) {
auto p = std::make_shared<MemTracker>(100);
auto c1= std::make_shared<MemTracker>(80, "", p);
auto c2= std::make_shared<MemTracker>(50, "", p);
// everything below limits
bool consumption = c1->TryConsume(60);
EXPECT_EQ(consumption, true);
EXPECT_EQ(c1->consumption(), 60);
EXPECT_FALSE(c1->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2->consumption(), 0);
EXPECT_FALSE(c2->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c2->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p->consumption(), 60);
EXPECT_FALSE(p->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(p->AnyLimitExceeded(MemLimit::HARD));
// p goes over limit
consumption = c2->TryConsume(50);
EXPECT_EQ(consumption, true);
EXPECT_EQ(c1->consumption(), 60);
EXPECT_FALSE(c1->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2->consumption(), 0);
EXPECT_FALSE(c2->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c2->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p->consumption(), 60);
EXPECT_FALSE(p->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(p->AnyLimitExceeded(MemLimit::HARD));
// c2 goes over limit, p drops below limit
c1->Release(20);
c2->Consume(10);
EXPECT_EQ(c1->consumption(), 40);
EXPECT_FALSE(c1->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c1->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(c2->consumption(), 10);
EXPECT_FALSE(c2->LimitExceeded(MemLimit::HARD));
EXPECT_FALSE(c2->AnyLimitExceeded(MemLimit::HARD));
EXPECT_EQ(p->consumption(), 50);
EXPECT_FALSE(p->LimitExceeded(MemLimit::HARD));
}
#if 0
class GcFunctionHelper {
public:
static const int NUM_RELEASE_BYTES = 1;
GcFunctionHelper(MemTracker* tracker) : _tracker(tracker) { }
~GcFunctionHelper() {}
void gc_func() { _tracker->Release(NUM_RELEASE_BYTES); }
private:
MemTracker* _tracker;
};
TEST(MemTestTest, GcFunctions) {
MemTracker t(10);
ASSERT_TRUE(t.has_limit());
t.Consume(9);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Test TryConsume()
EXPECT_FALSE(t.TryConsume(2));
EXPECT_EQ(t.consumption(), 9);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Attach GcFunction that releases 1 byte
GcFunctionHelper gc_func_helper(&t);
t.AddGcFunction(boost::bind(&GcFunctionHelper::gc_func, &gc_func_helper));
EXPECT_TRUE(t.TryConsume(2));
EXPECT_EQ(t.consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// GcFunction will be called even though TryConsume() fails
EXPECT_FALSE(t.TryConsume(2));
EXPECT_EQ(t.consumption(), 9);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// GcFunction won't be called
EXPECT_TRUE(t.TryConsume(1));
EXPECT_EQ(t.consumption(), 10);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
// Test LimitExceeded(MemLimit::HARD)
t.Consume(1);
EXPECT_EQ(t.consumption(), 11);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(t.consumption(), 10);
// Add more GcFunctions, test that we only call them until the limit is no longer
// exceeded
GcFunctionHelper gc_func_helper2(&t);
t.AddGcFunction(boost::bind(&GcFunctionHelper::gc_func, &gc_func_helper2));
GcFunctionHelper gc_func_helper3(&t);
t.AddGcFunction(boost::bind(&GcFunctionHelper::gc_func, &gc_func_helper3));
t.Consume(1);
EXPECT_EQ(t.consumption(), 11);
EXPECT_FALSE(t.LimitExceeded(MemLimit::HARD));
EXPECT_EQ(t.consumption(), 10);
}
#endif // enf #if 0
} // end namespace doris
int main(int argc, char** argv) {
// std::string conffile = std::string(getenv("DORIS_HOME")) + "/conf/be.conf";
// if (!doris::config::init(conffile.c_str(), false)) {
// fprintf(stderr, "error read config file. \n");
// return -1;
// }
doris::init_glog("be-test");
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}