# Proposed changes Issue Number: close #6238 Co-authored-by: HappenLee <happenlee@hotmail.com> Co-authored-by: stdpain <34912776+stdpain@users.noreply.github.com> Co-authored-by: Zhengguo Yang <yangzhgg@gmail.com> Co-authored-by: wangbo <506340561@qq.com> Co-authored-by: emmymiao87 <522274284@qq.com> Co-authored-by: Pxl <952130278@qq.com> Co-authored-by: zhangstar333 <87313068+zhangstar333@users.noreply.github.com> Co-authored-by: thinker <zchw100@qq.com> Co-authored-by: Zeno Yang <1521564989@qq.com> Co-authored-by: Wang Shuo <wangshuo128@gmail.com> Co-authored-by: zhoubintao <35688959+zbtzbtzbt@users.noreply.github.com> Co-authored-by: Gabriel <gabrielleebuaa@gmail.com> Co-authored-by: xinghuayu007 <1450306854@qq.com> Co-authored-by: weizuo93 <weizuo@apache.org> Co-authored-by: yiguolei <guoleiyi@tencent.com> Co-authored-by: anneji-dev <85534151+anneji-dev@users.noreply.github.com> Co-authored-by: awakeljw <993007281@qq.com> Co-authored-by: taberylyang <95272637+taberylyang@users.noreply.github.com> Co-authored-by: Cui Kaifeng <48012748+azurenake@users.noreply.github.com> ## Problem Summary: ### 1. Some code from clickhouse **ClickHouse is an excellent implementation of the vectorized execution engine database, so here we have referenced and learned a lot from its excellent implementation in terms of data structure and function implementation. We are based on ClickHouse v19.16.2.2 and would like to thank the ClickHouse community and developers.** The following comment has been added to the code from Clickhouse, eg: // This file is copied from // https://github.com/ClickHouse/ClickHouse/blob/master/src/Interpreters/AggregationCommon.h // and modified by Doris ### 2. Support exec node and query: * vaggregation_node * vanalytic_eval_node * vassert_num_rows_node * vblocking_join_node * vcross_join_node * vempty_set_node * ves_http_scan_node * vexcept_node * vexchange_node * vintersect_node * vmysql_scan_node * vodbc_scan_node * volap_scan_node * vrepeat_node * vschema_scan_node * vselect_node * vset_operation_node * vsort_node * vunion_node * vhash_join_node You can run exec engine of SSB/TPCH and 70% TPCDS stand query test set. ### 3. Data Model Vec Exec Engine Support **Dup/Agg/Unq** table, Support Block Reader Vectorized. Segment Vec is working in process. ### 4. How to use 1. Set the environment variable `set enable_vectorized_engine = true; `(required) 2. Set the environment variable `set batch_size = 4096; ` (recommended) ### 5. Some diff from origin exec engine https://github.com/doris-vectorized/doris-vectorized/issues/294 ## Checklist(Required) 1. Does it affect the original behavior: (No) 2. Has unit tests been added: (Yes) 3. Has document been added or modified: (No) 4. Does it need to update dependencies: (No) 5. Are there any changes that cannot be rolled back: (Yes)
286 lines
8.9 KiB
C++
286 lines
8.9 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "common/status.h"
|
|
#include "vec/aggregate_functions/aggregate_function.h"
|
|
#include "vec/columns/columns_number.h"
|
|
#include "vec/data_types/data_type_decimal.h"
|
|
#include "vec/data_types/data_type_number.h"
|
|
#include "vec/io/io_helper.h"
|
|
namespace doris::vectorized {
|
|
|
|
template <typename T, bool is_stddev>
|
|
struct BaseData {
|
|
BaseData() : mean(0.0), m2(0.0), count(0) {}
|
|
|
|
void write(BufferWritable& buf) const {
|
|
write_binary(mean, buf);
|
|
write_binary(m2, buf);
|
|
write_binary(count, buf);
|
|
}
|
|
|
|
void read(BufferReadable& buf) {
|
|
read_binary(mean, buf);
|
|
read_binary(m2, buf);
|
|
read_binary(count, buf);
|
|
}
|
|
|
|
void reset() {
|
|
mean = 0.0;
|
|
m2 = 0.0;
|
|
count = 0;
|
|
}
|
|
|
|
double get_result(double res) const {
|
|
if constexpr (is_stddev) {
|
|
return std::sqrt(res);
|
|
} else {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
double get_pop_result() const {
|
|
if (count == 1) {
|
|
return 0.0;
|
|
}
|
|
double res = m2 / count;
|
|
return get_result(res);
|
|
}
|
|
|
|
double get_samp_result() const {
|
|
double res = m2 / (count - 1);
|
|
return get_result(res);
|
|
}
|
|
|
|
static const DataTypePtr get_return_type() {
|
|
return make_nullable(std::make_shared<DataTypeNumber<Float64>>());
|
|
}
|
|
|
|
void merge(const BaseData& rhs) {
|
|
if (rhs.count == 0) {
|
|
return;
|
|
}
|
|
double delta = mean - rhs.mean;
|
|
double sum_count = count + rhs.count;
|
|
mean = rhs.mean + delta * count / sum_count;
|
|
m2 = rhs.m2 + m2 + (delta * delta) * rhs.count * count / sum_count;
|
|
count = sum_count;
|
|
}
|
|
|
|
void add(const IColumn** columns, size_t row_num) {
|
|
const auto& sources = static_cast<const ColumnVector<T>&>(*columns[0]);
|
|
double source_data = sources.get_data()[row_num];
|
|
|
|
double delta = source_data - mean;
|
|
double r = delta / (1 + count);
|
|
mean += r;
|
|
m2 += count * delta * r;
|
|
count += 1;
|
|
}
|
|
|
|
double mean;
|
|
double m2;
|
|
int64_t count;
|
|
};
|
|
|
|
template <bool is_stddev>
|
|
struct BaseDatadecimal {
|
|
BaseDatadecimal() : mean(0), m2(0), count(0) {}
|
|
|
|
void write(BufferWritable& buf) const {
|
|
write_binary(mean, buf);
|
|
write_binary(m2, buf);
|
|
write_binary(count, buf);
|
|
}
|
|
|
|
void read(BufferReadable& buf) {
|
|
read_binary(mean, buf);
|
|
read_binary(m2, buf);
|
|
read_binary(count, buf);
|
|
}
|
|
|
|
void reset() {
|
|
mean = DecimalV2Value();
|
|
m2 = DecimalV2Value();
|
|
count = {};
|
|
}
|
|
|
|
DecimalV2Value get_result(DecimalV2Value res) const {
|
|
if constexpr (is_stddev) {
|
|
return DecimalV2Value::sqrt(res);
|
|
} else {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
DecimalV2Value get_pop_result() const {
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
if (count == 1) {
|
|
return new_count;
|
|
}
|
|
DecimalV2Value res = m2 / new_count.assign_from_double(count);
|
|
return get_result(res);
|
|
}
|
|
|
|
DecimalV2Value get_samp_result() const {
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
DecimalV2Value res = m2 / new_count.assign_from_double(count - 1);
|
|
return get_result(res);
|
|
}
|
|
|
|
static const DataTypePtr get_return_type() {
|
|
return make_nullable(std::make_shared<DataTypeDecimal<Decimal128>>(27, 9));
|
|
}
|
|
|
|
void merge(const BaseDatadecimal& rhs) {
|
|
if (rhs.count == 0) {
|
|
return;
|
|
}
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
new_count.assign_from_double(count);
|
|
DecimalV2Value rhs_count = DecimalV2Value();
|
|
rhs_count.assign_from_double(rhs.count);
|
|
|
|
DecimalV2Value delta = mean - rhs.mean;
|
|
DecimalV2Value sum_count = new_count + rhs_count;
|
|
mean = rhs.mean + delta * (new_count / sum_count);
|
|
m2 = rhs.m2 + m2 + (delta * delta) * (rhs_count * new_count / sum_count);
|
|
count += rhs.count;
|
|
}
|
|
|
|
void add(const IColumn** columns, size_t row_num) {
|
|
DecimalV2Value source_data = DecimalV2Value();
|
|
const auto& sources = static_cast<const ColumnDecimal<Decimal128>&>(*columns[0]);
|
|
source_data = (DecimalV2Value)sources.get_data()[row_num];
|
|
|
|
DecimalV2Value new_count = DecimalV2Value();
|
|
new_count.assign_from_double(count);
|
|
DecimalV2Value increase_count = DecimalV2Value();
|
|
increase_count.assign_from_double(1 + count);
|
|
|
|
DecimalV2Value delta = source_data - mean;
|
|
DecimalV2Value r = delta / increase_count;
|
|
mean += r;
|
|
m2 += new_count * delta * r;
|
|
count += 1;
|
|
}
|
|
|
|
DecimalV2Value mean;
|
|
DecimalV2Value m2;
|
|
int64_t count;
|
|
};
|
|
|
|
template <typename T, typename Data>
|
|
struct PopData : Data {
|
|
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<Decimal128>, ColumnVector<Float64>>;
|
|
void insert_result_into(IColumn& to) const {
|
|
ColumnNullable& nullable_column = assert_cast<ColumnNullable&>(to);
|
|
auto& col = static_cast<ColVecResult&>(nullable_column.get_nested_column());
|
|
if constexpr (IsDecimalNumber<T>) {
|
|
col.get_data().push_back(this->get_pop_result().value());
|
|
} else {
|
|
col.get_data().push_back(this->get_pop_result());
|
|
}
|
|
nullable_column.get_null_map_data().push_back(0);
|
|
}
|
|
};
|
|
|
|
template <typename T, typename Data>
|
|
struct SampData : Data {
|
|
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<Decimal128>, ColumnVector<Float64>>;
|
|
void insert_result_into(IColumn& to) const {
|
|
ColumnNullable& nullable_column = assert_cast<ColumnNullable&>(to);
|
|
if (this->count == 1) {
|
|
nullable_column.insert_default();
|
|
} else {
|
|
auto& col = static_cast<ColVecResult&>(nullable_column.get_nested_column());
|
|
if constexpr (IsDecimalNumber<T>) {
|
|
col.get_data().push_back(this->get_samp_result().value());
|
|
} else {
|
|
col.get_data().push_back(this->get_samp_result());
|
|
}
|
|
nullable_column.get_null_map_data().push_back(0);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Data>
|
|
struct StddevData : Data {
|
|
static const char* name() { return "stddev"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
struct VarianceData : Data {
|
|
static const char* name() { return "variance"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
struct VarianceSampData : Data {
|
|
static const char* name() { return "variance_samp"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
struct StddevSampData : Data {
|
|
static const char* name() { return "stddev_samp"; }
|
|
};
|
|
|
|
template <typename Data>
|
|
class AggregateFunctionStddevSamp final
|
|
: public IAggregateFunctionDataHelper<Data, AggregateFunctionStddevSamp<Data>> {
|
|
public:
|
|
AggregateFunctionStddevSamp(const DataTypes& argument_types_)
|
|
: IAggregateFunctionDataHelper<Data, AggregateFunctionStddevSamp<Data>>(argument_types_,
|
|
{}) {}
|
|
|
|
String get_name() const override { return Data::name(); }
|
|
|
|
bool insert_to_null_default() const override { return false; }
|
|
|
|
DataTypePtr get_return_type() const override { return Data::get_return_type(); }
|
|
|
|
void add(AggregateDataPtr __restrict place, const IColumn** columns, size_t row_num,
|
|
Arena*) const override {
|
|
this->data(place).add(columns, row_num);
|
|
}
|
|
|
|
void reset(AggregateDataPtr __restrict place) const override { this->data(place).reset(); }
|
|
|
|
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs,
|
|
Arena*) const override {
|
|
this->data(place).merge(this->data(rhs));
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr __restrict place, BufferWritable& buf) const override {
|
|
this->data(place).write(buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr __restrict place, BufferReadable& buf,
|
|
Arena*) const override {
|
|
this->data(place).read(buf);
|
|
}
|
|
|
|
void insert_result_into(ConstAggregateDataPtr __restrict place, IColumn& to) const override {
|
|
this->data(place).insert_result_into(to);
|
|
}
|
|
|
|
const char* get_header_file_path() const override { return __FILE__; }
|
|
};
|
|
|
|
} // namespace doris::vectorized
|