Files
doris/be/test/exec/tablet_sink_test.cpp
HuangWei 10f822eb43 [MemTracker] make all MemTrackers shared (#4135)
We make all MemTrackers shared, in order to show MemTracker real-time consumptions on the web.
As follows:
1. nearly all MemTracker raw ptr -> shared_ptr
2. Use CreateTracker() to create new MemTracker(in order to add itself to its parent)
3. RowBatch & MemPool still use raw ptrs of MemTracker, it's easy to ensure RowBatch & MemPool destructor exec 
     before MemTracker's destructor. So we don't change these code.
4. MemTracker can use RuntimeProfile's counter to calc consumption. So RuntimeProfile's counter need to be shared 
    too. We add a shared counter pool to store the shared counter, don't change other counters of RuntimeProfile.
Note that, this PR doesn't change the MemTracker tree structure. So there still have some orphan trackers, e.g. RowBlockV2's MemTracker. If you find some shared MemTrackers are little memory consumption & too time-consuming, you could make them be the orphan, then it's fine to use the raw ptr.
2020-07-31 21:57:21 +08:00

985 lines
34 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/tablet_sink.h"
#include <gtest/gtest.h>
#include "common/config.h"
#include "gen_cpp/HeartbeatService_types.h"
#include "gen_cpp/internal_service.pb.h"
#include "runtime/bufferpool/reservation_tracker.h"
#include "runtime/decimal_value.h"
#include "runtime/descriptor_helper.h"
#include "runtime/exec_env.h"
#include "runtime/result_queue_mgr.h"
#include "runtime/row_batch.h"
#include "runtime/runtime_state.h"
#include "runtime/stream_load/load_stream_mgr.h"
#include "runtime/thread_resource_mgr.h"
#include "runtime/tuple_row.h"
#include "service/brpc.h"
#include "util/brpc_stub_cache.h"
#include "util/cpu_info.h"
#include "util/debug/leakcheck_disabler.h"
namespace doris {
namespace stream_load {
Status k_add_batch_status;
class OlapTableSinkTest : public testing::Test {
public:
OlapTableSinkTest() {}
virtual ~OlapTableSinkTest() {}
void SetUp() override {
k_add_batch_status = Status::OK();
_env = ExecEnv::GetInstance();
_env->_thread_mgr = new ThreadResourceMgr();
_env->_master_info = new TMasterInfo();
_env->_load_stream_mgr = new LoadStreamMgr();
_env->_brpc_stub_cache = new BrpcStubCache();
_env->_buffer_reservation = new ReservationTracker();
config::tablet_writer_open_rpc_timeout_sec = 60;
}
void TearDown() override {
SAFE_DELETE(_env->_brpc_stub_cache);
SAFE_DELETE(_env->_load_stream_mgr);
SAFE_DELETE(_env->_master_info);
SAFE_DELETE(_env->_thread_mgr);
SAFE_DELETE(_env->_buffer_reservation);
if (_server) {
_server->Stop(100);
_server->Join();
SAFE_DELETE(_server);
}
}
private:
ExecEnv* _env = nullptr;
brpc::Server* _server = nullptr;
};
TDataSink get_data_sink(TDescriptorTable* desc_tbl) {
int64_t db_id = 1;
int64_t table_id = 2;
int64_t partition_id = 3;
int64_t index1_id = 4;
int64_t tablet1_id = 6;
int64_t tablet2_id = 7;
TDataSink data_sink;
data_sink.type = TDataSinkType::OLAP_TABLE_SINK;
data_sink.__isset.olap_table_sink = true;
TOlapTableSink& tsink = data_sink.olap_table_sink;
tsink.load_id.hi = 123;
tsink.load_id.lo = 456;
tsink.txn_id = 789;
tsink.db_id = 1;
tsink.table_id = 2;
tsink.tuple_id = 0;
tsink.num_replicas = 3;
tsink.db_name = "testDb";
tsink.table_name = "testTable";
// cosntruct schema
TOlapTableSchemaParam& tschema = tsink.schema;
tschema.db_id = 1;
tschema.table_id = 2;
tschema.version = 0;
// descriptor
{
TDescriptorTableBuilder dtb;
{
TTupleDescriptorBuilder tuple_builder;
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_INT)
.column_name("c1")
.column_pos(1)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_BIGINT)
.column_name("c2")
.column_pos(2)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.string_type(10)
.column_name("c3")
.column_pos(3)
.build());
tuple_builder.build(&dtb);
}
{
TTupleDescriptorBuilder tuple_builder;
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_INT)
.column_name("c1")
.column_pos(1)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_BIGINT)
.column_name("c2")
.column_pos(2)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.string_type(20)
.column_name("c3")
.column_pos(3)
.build());
tuple_builder.build(&dtb);
}
*desc_tbl = dtb.desc_tbl();
tschema.slot_descs = desc_tbl->slotDescriptors;
tschema.tuple_desc = desc_tbl->tupleDescriptors[0];
}
// index
tschema.indexes.resize(1);
tschema.indexes[0].id = index1_id;
tschema.indexes[0].columns = {"c1", "c2", "c3"};
// tschema.indexes[1].id = 5;
// tschema.indexes[1].columns = {"c1", "c3"};
// partition
TOlapTablePartitionParam& tpartition = tsink.partition;
tpartition.db_id = db_id;
tpartition.table_id = table_id;
tpartition.version = table_id;
tpartition.__set_partition_column("c2");
tpartition.__set_distributed_columns({"c1", "c3"});
tpartition.partitions.resize(1);
tpartition.partitions[0].id = partition_id;
tpartition.partitions[0].num_buckets = 2;
tpartition.partitions[0].indexes.resize(1);
tpartition.partitions[0].indexes[0].index_id = index1_id;
tpartition.partitions[0].indexes[0].tablets = {tablet1_id, tablet2_id};
// location
TOlapTableLocationParam& location = tsink.location;
location.db_id = db_id;
location.table_id = table_id;
location.version = 0;
location.tablets.resize(2);
location.tablets[0].tablet_id = tablet1_id;
location.tablets[0].node_ids = {0, 1, 2};
location.tablets[1].tablet_id = tablet2_id;
location.tablets[1].node_ids = {0, 1, 2};
// location
TPaloNodesInfo& nodes_info = tsink.nodes_info;
nodes_info.nodes.resize(3);
nodes_info.nodes[0].id = 0;
nodes_info.nodes[0].host = "127.0.0.1";
nodes_info.nodes[0].async_internal_port = 4356;
nodes_info.nodes[1].id = 1;
nodes_info.nodes[1].host = "127.0.0.1";
nodes_info.nodes[1].async_internal_port = 4356;
nodes_info.nodes[2].id = 2;
nodes_info.nodes[2].host = "127.0.0.1";
nodes_info.nodes[2].async_internal_port = 4357;
return data_sink;
}
TDataSink get_decimal_sink(TDescriptorTable* desc_tbl) {
int64_t db_id = 1;
int64_t table_id = 2;
int64_t partition_id = 3;
int64_t index1_id = 4;
int64_t tablet1_id = 6;
int64_t tablet2_id = 7;
TDataSink data_sink;
data_sink.type = TDataSinkType::OLAP_TABLE_SINK;
data_sink.__isset.olap_table_sink = true;
TOlapTableSink& tsink = data_sink.olap_table_sink;
tsink.load_id.hi = 123;
tsink.load_id.lo = 456;
tsink.txn_id = 789;
tsink.db_id = 1;
tsink.table_id = 2;
tsink.tuple_id = 0;
tsink.num_replicas = 3;
tsink.db_name = "testDb";
tsink.table_name = "testTable";
// cosntruct schema
TOlapTableSchemaParam& tschema = tsink.schema;
tschema.db_id = 1;
tschema.table_id = 2;
tschema.version = 0;
// descriptor
{
TDescriptorTableBuilder dtb;
{
TTupleDescriptorBuilder tuple_builder;
tuple_builder.add_slot(TSlotDescriptorBuilder()
.type(TYPE_INT)
.column_name("c1")
.column_pos(1)
.build());
tuple_builder.add_slot(TSlotDescriptorBuilder()
.decimal_type(5, 2)
.column_name("c2")
.column_pos(2)
.build());
tuple_builder.build(&dtb);
}
*desc_tbl = dtb.desc_tbl();
tschema.slot_descs = desc_tbl->slotDescriptors;
tschema.tuple_desc = desc_tbl->tupleDescriptors[0];
}
// index
tschema.indexes.resize(1);
tschema.indexes[0].id = index1_id;
tschema.indexes[0].columns = {"c1", "c2"};
// tschema.indexes[1].id = 5;
// tschema.indexes[1].columns = {"c1", "c3"};
// partition
TOlapTablePartitionParam& tpartition = tsink.partition;
tpartition.db_id = db_id;
tpartition.table_id = table_id;
tpartition.version = table_id;
tpartition.__set_partition_column("c1");
tpartition.__set_distributed_columns({"c2"});
tpartition.partitions.resize(1);
tpartition.partitions[0].id = partition_id;
tpartition.partitions[0].num_buckets = 2;
tpartition.partitions[0].indexes.resize(1);
tpartition.partitions[0].indexes[0].index_id = index1_id;
tpartition.partitions[0].indexes[0].tablets = {tablet1_id, tablet2_id};
// location
TOlapTableLocationParam& location = tsink.location;
location.db_id = db_id;
location.table_id = table_id;
location.version = 0;
location.tablets.resize(2);
location.tablets[0].tablet_id = tablet1_id;
location.tablets[0].node_ids = {0, 1, 2};
location.tablets[1].tablet_id = tablet2_id;
location.tablets[1].node_ids = {0, 1, 2};
// location
TPaloNodesInfo& nodes_info = tsink.nodes_info;
nodes_info.nodes.resize(3);
nodes_info.nodes[0].id = 0;
nodes_info.nodes[0].host = "127.0.0.1";
nodes_info.nodes[0].async_internal_port = 4356;
nodes_info.nodes[1].id = 1;
nodes_info.nodes[1].host = "127.0.0.1";
nodes_info.nodes[1].async_internal_port = 4356;
nodes_info.nodes[2].id = 2;
nodes_info.nodes[2].host = "127.0.0.1";
nodes_info.nodes[2].async_internal_port = 4357;
return data_sink;
}
class TestInternalService : public palo::PInternalService {
public:
TestInternalService() {}
virtual ~TestInternalService() {}
void transmit_data(::google::protobuf::RpcController* controller,
const ::doris::PTransmitDataParams* request,
::doris::PTransmitDataResult* response,
::google::protobuf::Closure* done) override {
done->Run();
}
void tablet_writer_open(google::protobuf::RpcController* controller,
const PTabletWriterOpenRequest* request,
PTabletWriterOpenResult* response,
google::protobuf::Closure* done) override {
Status status;
status.to_protobuf(response->mutable_status());
done->Run();
}
void tablet_writer_add_batch(google::protobuf::RpcController* controller,
const PTabletWriterAddBatchRequest* request,
PTabletWriterAddBatchResult* response,
google::protobuf::Closure* done) override {
{
std::lock_guard<std::mutex> l(_lock);
row_counters += request->tablet_ids_size();
if (request->eos()) {
eof_counters++;
}
k_add_batch_status.to_protobuf(response->mutable_status());
if (request->has_row_batch() && _row_desc != nullptr) {
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(*_row_desc, request->row_batch(), tracker.get());
for (int i = 0; i < batch.num_rows(); ++i) {
LOG(INFO) << batch.get_row(i)->to_string(*_row_desc);
_output_set->emplace(batch.get_row(i)->to_string(*_row_desc));
}
}
}
done->Run();
}
void tablet_writer_cancel(google::protobuf::RpcController* controller,
const PTabletWriterCancelRequest* request,
PTabletWriterCancelResult* response,
google::protobuf::Closure* done) override {
done->Run();
}
std::mutex _lock;
int64_t eof_counters = 0;
int64_t row_counters = 0;
RowDescriptor* _row_desc = nullptr;
std::set<std::string>* _output_set;
};
TEST_F(OlapTableSinkTest, normal) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
// state._query_mem_tracker.reset(new MemTracker());
// state._instance_mem_tracker.reset(new MemTracker(-1, "test", state._query_mem_tracker.get()));
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
LOG(INFO) << "tuple_desc=" << tuple_desc->debug_string();
RowDescriptor row_desc(*desc_tbl, {0}, {false});
OlapTableSink sink(&obj_pool, row_desc, {}, &st);
ASSERT_TRUE(st.ok());
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
// prepare
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
// open
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
// 12, 9, "abc"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 9;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 3;
memcpy(str_val->ptr, "abc", str_val->len);
batch.commit_last_row();
}
// 13, 25, "abcd"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 13;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 25;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 4;
memcpy(str_val->ptr, "abcd", str_val->len);
batch.commit_last_row();
}
// 14, 50, "abcde"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 14;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 50;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = reinterpret_cast<char*>(batch.tuple_data_pool()->allocate(16));
str_val->len = 15;
memcpy(str_val->ptr, "abcde1234567890", str_val->len);
batch.commit_last_row();
}
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// close
st = sink.close(&state, Status::OK());
ASSERT_TRUE(st.ok());
// each node has a eof
ASSERT_EQ(2, service->eof_counters);
ASSERT_EQ(2 * 2, service->row_counters);
// 2node * 2
ASSERT_EQ(1, state.num_rows_load_filtered());
}
TEST_F(OlapTableSinkTest, convert) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1024;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[4].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
// prepare
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
// open
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
// 12, 9, "abc"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 9;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 3;
memcpy(str_val->ptr, "abc", str_val->len);
batch.commit_last_row();
}
// 13, 25, "abcd"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 13;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 25;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 4;
memcpy(str_val->ptr, "abcd", str_val->len);
batch.commit_last_row();
}
// 14, 50, "abcde"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 14;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 50;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = reinterpret_cast<char*>(batch.tuple_data_pool()->allocate(10));
str_val->len = 5;
memcpy(str_val->ptr, "abcde", str_val->len);
batch.commit_last_row();
}
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// close
st = sink.close(&state, Status::OK());
ASSERT_TRUE(st.ok());
// each node has a eof
ASSERT_EQ(2, service->eof_counters);
ASSERT_EQ(2 * 3, service->row_counters);
// 2node * 2
ASSERT_EQ(0, state.num_rows_load_filtered());
}
TEST_F(OlapTableSinkTest, init_fail1) {
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(1);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
{
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 5;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
{
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
}
TEST_F(OlapTableSinkTest, init_fail3) {
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
TEST_F(OlapTableSinkTest, init_fail4) {
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[4].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
t_data_sink.olap_table_sink.partition.partitions[0].indexes[0].tablets = {101, 102};
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
EXPECT_FALSE(st.ok());
sink.close(&state, st);
}
TEST_F(OlapTableSinkTest, add_batch_failed) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
// ObjectPool create before RuntimeState, simulate actual situation better.
ObjectPool obj_pool;
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_data_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
RowDescriptor row_desc(*desc_tbl, {0}, {false});
// expr
std::vector<TExpr> exprs;
exprs.resize(3);
exprs[0].nodes.resize(1);
exprs[0].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[0].nodes[0].type = tdesc_tbl.slotDescriptors[3].slotType;
exprs[0].nodes[0].num_children = 0;
exprs[0].nodes[0].__isset.slot_ref = true;
exprs[0].nodes[0].slot_ref.slot_id = 0;
exprs[0].nodes[0].slot_ref.tuple_id = 1;
exprs[1].nodes.resize(1);
exprs[1].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[1].nodes[0].type = tdesc_tbl.slotDescriptors[4].slotType;
exprs[1].nodes[0].num_children = 0;
exprs[1].nodes[0].__isset.slot_ref = true;
exprs[1].nodes[0].slot_ref.slot_id = 1;
exprs[1].nodes[0].slot_ref.tuple_id = 1;
exprs[2].nodes.resize(1);
exprs[2].nodes[0].node_type = TExprNodeType::SLOT_REF;
exprs[2].nodes[0].type = tdesc_tbl.slotDescriptors[5].slotType;
exprs[2].nodes[0].num_children = 0;
exprs[2].nodes[0].__isset.slot_ref = true;
exprs[2].nodes[0].slot_ref.slot_id = 2;
exprs[2].nodes[0].slot_ref.tuple_id = 1;
OlapTableSink sink(&obj_pool, row_desc, exprs, &st);
ASSERT_TRUE(st.ok());
// set output tuple_id
t_data_sink.olap_table_sink.tuple_id = 1;
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
// 12, 9, "abc"
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
*reinterpret_cast<int64_t*>(tuple->get_slot(8)) = 9;
StringValue* str_val = reinterpret_cast<StringValue*>(tuple->get_slot(16));
str_val->ptr = (char*)batch.tuple_data_pool()->allocate(10);
str_val->len = 3;
memcpy(str_val->ptr, "abc", str_val->len);
batch.commit_last_row();
}
// Channels will be cancelled internally, coz brpc returns k_add_batch_status.
k_add_batch_status = Status::InternalError("dummy failed");
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// Send batch multiple times, can make _cur_batch or _pending_batches(in channels) not empty.
// To ensure the order of releasing resource is OK.
sink.send(&state, &batch);
sink.send(&state, &batch);
// close
st = sink.close(&state, Status::OK());
ASSERT_FALSE(st.ok());
}
TEST_F(OlapTableSinkTest, decimal) {
// start brpc service first
_server = new brpc::Server();
auto service = new TestInternalService();
ASSERT_EQ(_server->AddService(service, brpc::SERVER_OWNS_SERVICE), 0);
brpc::ServerOptions options;
{
debug::ScopedLeakCheckDisabler disable_lsan;
_server->Start(4356, &options);
}
TUniqueId fragment_id;
TQueryOptions query_options;
query_options.batch_size = 1;
RuntimeState state(fragment_id, query_options, TQueryGlobals(), _env);
state.init_mem_trackers(TUniqueId());
ObjectPool obj_pool;
TDescriptorTable tdesc_tbl;
auto t_data_sink = get_decimal_sink(&tdesc_tbl);
// crate desc_tabl
DescriptorTbl* desc_tbl = nullptr;
auto st = DescriptorTbl::create(&obj_pool, tdesc_tbl, &desc_tbl);
ASSERT_TRUE(st.ok());
state._desc_tbl = desc_tbl;
TupleDescriptor* tuple_desc = desc_tbl->get_tuple_descriptor(0);
LOG(INFO) << "tuple_desc=" << tuple_desc->debug_string();
RowDescriptor row_desc(*desc_tbl, {0}, {false});
service->_row_desc = &row_desc;
std::set<std::string> output_set;
service->_output_set = &output_set;
OlapTableSink sink(&obj_pool, row_desc, {}, &st);
ASSERT_TRUE(st.ok());
// init
st = sink.init(t_data_sink);
ASSERT_TRUE(st.ok());
// prepare
st = sink.prepare(&state);
ASSERT_TRUE(st.ok());
// open
st = sink.open(&state);
ASSERT_TRUE(st.ok());
// send
auto tracker = std::make_shared<MemTracker>();
RowBatch batch(row_desc, 1024, tracker.get());
// 12, 12.3
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 12;
DecimalValue* dec_val = reinterpret_cast<DecimalValue*>(tuple->get_slot(16));
*dec_val = DecimalValue("12.3");
batch.commit_last_row();
}
// 13, 123.123456789
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 13;
DecimalValue* dec_val = reinterpret_cast<DecimalValue*>(tuple->get_slot(16));
*dec_val = DecimalValue("123.123456789");
batch.commit_last_row();
}
// 14, 123456789123.1234
{
Tuple* tuple = (Tuple*)batch.tuple_data_pool()->allocate(tuple_desc->byte_size());
batch.get_row(batch.add_row())->set_tuple(0, tuple);
memset(tuple, 0, tuple_desc->byte_size());
*reinterpret_cast<int*>(tuple->get_slot(4)) = 14;
DecimalValue* dec_val = reinterpret_cast<DecimalValue*>(tuple->get_slot(16));
*dec_val = DecimalValue("123456789123.1234");
batch.commit_last_row();
}
st = sink.send(&state, &batch);
ASSERT_TRUE(st.ok());
// close
st = sink.close(&state, Status::OK());
ASSERT_TRUE(st.ok());
ASSERT_EQ(2, output_set.size());
ASSERT_TRUE(output_set.count("[(12 12.3)]") > 0);
ASSERT_TRUE(output_set.count("[(13 123.12)]") > 0);
// ASSERT_TRUE(output_set.count("[(14 999.99)]") > 0);
}
} // namespace stream_load
} // namespace doris
int main(int argc, char* argv[]) {
doris::CpuInfo::init();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}